Fabio Henkel, Leonie Deßloch, Ufuk Gürer, Benjamin Winkeljann, Matthias Marczynski, Olivia M. Merkel, Oliver Lieleg
{"title":"自解体微粒在空气/粘液界面上的行为","authors":"Fabio Henkel, Leonie Deßloch, Ufuk Gürer, Benjamin Winkeljann, Matthias Marczynski, Olivia M. Merkel, Oliver Lieleg","doi":"10.1002/anbr.202300153","DOIUrl":null,"url":null,"abstract":"<p>In recent years, highly specialized nanoscopic drug carriers have been developed, which can, e.g., traverse biological barriers, protect drugs against harsh physiological conditions, and release such drugs in a controlled manner. However, for the delivery of particles <i>via</i> the respiratory pathway, aerodynamic diameters in the range of several micrometers are required to achieve good lung deposition and biodistribution. To combine the favorable properties of inhalable, micron-sized particles with the advantages of nanosized drug carriers, herein, dry-powder, hybrid microparticles (h-μPs), which disintegrate upon contact with moist surfaces (as present in the lung) to release the embedded nanoparticles into the mucosa, are introduced. Furthermore, a microfluidic setup, which mimics the air–gel interface of the mucosal airway epithelium, is presented. With this setup, the interaction of airborne h-μPs with the mucosal interface on a microscopic level is investigated. In detail, the influence of the h-μP charge on their deposition efficiency is tested and it is found that this process is governed by a combination of electrostatic interactions between the mucosal surface and the h-μPs as well as hygroscopic effects. Thus, this approach can help to optimize inhalable drug carriers to increase the efficiency of pulmonary drug administration <i>via</i> the respiratory pathway.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 7","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300153","citationCount":"0","resultStr":"{\"title\":\"Behavior of Self-Disintegrating Microparticles at the Air/Mucus Interface\",\"authors\":\"Fabio Henkel, Leonie Deßloch, Ufuk Gürer, Benjamin Winkeljann, Matthias Marczynski, Olivia M. Merkel, Oliver Lieleg\",\"doi\":\"10.1002/anbr.202300153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In recent years, highly specialized nanoscopic drug carriers have been developed, which can, e.g., traverse biological barriers, protect drugs against harsh physiological conditions, and release such drugs in a controlled manner. However, for the delivery of particles <i>via</i> the respiratory pathway, aerodynamic diameters in the range of several micrometers are required to achieve good lung deposition and biodistribution. To combine the favorable properties of inhalable, micron-sized particles with the advantages of nanosized drug carriers, herein, dry-powder, hybrid microparticles (h-μPs), which disintegrate upon contact with moist surfaces (as present in the lung) to release the embedded nanoparticles into the mucosa, are introduced. Furthermore, a microfluidic setup, which mimics the air–gel interface of the mucosal airway epithelium, is presented. With this setup, the interaction of airborne h-μPs with the mucosal interface on a microscopic level is investigated. In detail, the influence of the h-μP charge on their deposition efficiency is tested and it is found that this process is governed by a combination of electrostatic interactions between the mucosal surface and the h-μPs as well as hygroscopic effects. Thus, this approach can help to optimize inhalable drug carriers to increase the efficiency of pulmonary drug administration <i>via</i> the respiratory pathway.</p>\",\"PeriodicalId\":29975,\"journal\":{\"name\":\"Advanced Nanobiomed Research\",\"volume\":\"4 7\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300153\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nanobiomed Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202300153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202300153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Behavior of Self-Disintegrating Microparticles at the Air/Mucus Interface
In recent years, highly specialized nanoscopic drug carriers have been developed, which can, e.g., traverse biological barriers, protect drugs against harsh physiological conditions, and release such drugs in a controlled manner. However, for the delivery of particles via the respiratory pathway, aerodynamic diameters in the range of several micrometers are required to achieve good lung deposition and biodistribution. To combine the favorable properties of inhalable, micron-sized particles with the advantages of nanosized drug carriers, herein, dry-powder, hybrid microparticles (h-μPs), which disintegrate upon contact with moist surfaces (as present in the lung) to release the embedded nanoparticles into the mucosa, are introduced. Furthermore, a microfluidic setup, which mimics the air–gel interface of the mucosal airway epithelium, is presented. With this setup, the interaction of airborne h-μPs with the mucosal interface on a microscopic level is investigated. In detail, the influence of the h-μP charge on their deposition efficiency is tested and it is found that this process is governed by a combination of electrostatic interactions between the mucosal surface and the h-μPs as well as hygroscopic effects. Thus, this approach can help to optimize inhalable drug carriers to increase the efficiency of pulmonary drug administration via the respiratory pathway.
期刊介绍:
Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science.
The scope of Advanced NanoBiomed Research will cover the following key subject areas:
▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging.
▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications.
▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture.
▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs.
▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization.
▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems.
with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.