心外膜射频消融室壁时分散电极位置(前部与后部)的影响:计算机模拟研究。

IF 2.2 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Ramiro M. Irastorza, Claudio Hadid, Enrique Berjano
{"title":"心外膜射频消融室壁时分散电极位置(前部与后部)的影响:计算机模拟研究。","authors":"Ramiro M. Irastorza,&nbsp;Claudio Hadid,&nbsp;Enrique Berjano","doi":"10.1002/cnm.3847","DOIUrl":null,"url":null,"abstract":"<p>An epicardial approach is often used in radiofrequency (RF) catheter ablation to ablate ventricular tachycardia when an endocardial approach fails. Our objective was to analyze the effect of the position of the dispersive patch (DP) on lesion size using computer modeling during epicardial approach. We compared the posterior position (patient's back), commonly used in clinical practice, to the anterior position (patient's chest). The model considered ventricular wall thicknesses between 4 and 8 mm, and electrode insertion depths between .3 and .7 mm. RF pulses were simulated with 20 W of power for 30 s duration. Statistically significant differences (<i>P</i> &lt; .001) were found between both DP positions in terms of baseline impedance, RF current (at 15 s) and thermal lesion size. The anterior position involved lower impedance (130.8 ± 4.7 vs. 146.2 ± 4.9 Ω) and a higher current (401.5 ± 5.6 vs. 377.5 ± 5.1 mA). The anterior position created lesion sizes larger than the posterior position: 8.9 ± 0.4 vs. 8.4 ± 0.4 mm in maximum width, 8.6 ± 0.4 vs. 8.1 ± 0.4 mm in surface width, and 4.5 ± 0.4 vs. 4.3 ± 0.4 mm in depth. Our results suggest that: (1) the redirection of the RF currents due to repositioning the PD has little impact on lesion size and only affects baseline impedance, and (2) the differences in lesion size are only 0.5 mm wider and 0.2 mm deeper for the anterior position, which does not seem to have a clinical impact in the context of VT ablation.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":"40 8","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of dispersive electrode position (anterior vs. posterior) in epicardial radiofrequency ablation of ventricular wall: A computer simulation study\",\"authors\":\"Ramiro M. Irastorza,&nbsp;Claudio Hadid,&nbsp;Enrique Berjano\",\"doi\":\"10.1002/cnm.3847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An epicardial approach is often used in radiofrequency (RF) catheter ablation to ablate ventricular tachycardia when an endocardial approach fails. Our objective was to analyze the effect of the position of the dispersive patch (DP) on lesion size using computer modeling during epicardial approach. We compared the posterior position (patient's back), commonly used in clinical practice, to the anterior position (patient's chest). The model considered ventricular wall thicknesses between 4 and 8 mm, and electrode insertion depths between .3 and .7 mm. RF pulses were simulated with 20 W of power for 30 s duration. Statistically significant differences (<i>P</i> &lt; .001) were found between both DP positions in terms of baseline impedance, RF current (at 15 s) and thermal lesion size. The anterior position involved lower impedance (130.8 ± 4.7 vs. 146.2 ± 4.9 Ω) and a higher current (401.5 ± 5.6 vs. 377.5 ± 5.1 mA). The anterior position created lesion sizes larger than the posterior position: 8.9 ± 0.4 vs. 8.4 ± 0.4 mm in maximum width, 8.6 ± 0.4 vs. 8.1 ± 0.4 mm in surface width, and 4.5 ± 0.4 vs. 4.3 ± 0.4 mm in depth. Our results suggest that: (1) the redirection of the RF currents due to repositioning the PD has little impact on lesion size and only affects baseline impedance, and (2) the differences in lesion size are only 0.5 mm wider and 0.2 mm deeper for the anterior position, which does not seem to have a clinical impact in the context of VT ablation.</p>\",\"PeriodicalId\":50349,\"journal\":{\"name\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"volume\":\"40 8\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnm.3847\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnm.3847","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

在射频(RF)导管消融术中,当心内膜入路失败时,通常使用心外膜入路消融室性心动过速。我们的目的是利用计算机建模分析心外膜入路时分散贴片(DP)位置对病灶大小的影响。我们比较了临床上常用的后位(患者背部)和前位(患者胸部)。模型考虑的心室壁厚度在 4 至 8 毫米之间,电极插入深度在 0.3 至 0.7 毫米之间。模拟射频脉冲的功率为 20 瓦,持续时间为 30 秒。统计学差异(P
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of dispersive electrode position (anterior vs. posterior) in epicardial radiofrequency ablation of ventricular wall: A computer simulation study

Effect of dispersive electrode position (anterior vs. posterior) in epicardial radiofrequency ablation of ventricular wall: A computer simulation study

An epicardial approach is often used in radiofrequency (RF) catheter ablation to ablate ventricular tachycardia when an endocardial approach fails. Our objective was to analyze the effect of the position of the dispersive patch (DP) on lesion size using computer modeling during epicardial approach. We compared the posterior position (patient's back), commonly used in clinical practice, to the anterior position (patient's chest). The model considered ventricular wall thicknesses between 4 and 8 mm, and electrode insertion depths between .3 and .7 mm. RF pulses were simulated with 20 W of power for 30 s duration. Statistically significant differences (P < .001) were found between both DP positions in terms of baseline impedance, RF current (at 15 s) and thermal lesion size. The anterior position involved lower impedance (130.8 ± 4.7 vs. 146.2 ± 4.9 Ω) and a higher current (401.5 ± 5.6 vs. 377.5 ± 5.1 mA). The anterior position created lesion sizes larger than the posterior position: 8.9 ± 0.4 vs. 8.4 ± 0.4 mm in maximum width, 8.6 ± 0.4 vs. 8.1 ± 0.4 mm in surface width, and 4.5 ± 0.4 vs. 4.3 ± 0.4 mm in depth. Our results suggest that: (1) the redirection of the RF currents due to repositioning the PD has little impact on lesion size and only affects baseline impedance, and (2) the differences in lesion size are only 0.5 mm wider and 0.2 mm deeper for the anterior position, which does not seem to have a clinical impact in the context of VT ablation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal for Numerical Methods in Biomedical Engineering
International Journal for Numerical Methods in Biomedical Engineering ENGINEERING, BIOMEDICAL-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
4.50
自引率
9.50%
发文量
103
审稿时长
3 months
期刊介绍: All differential equation based models for biomedical applications and their novel solutions (using either established numerical methods such as finite difference, finite element and finite volume methods or new numerical methods) are within the scope of this journal. Manuscripts with experimental and analytical themes are also welcome if a component of the paper deals with numerical methods. Special cases that may not involve differential equations such as image processing, meshing and artificial intelligence are within the scope. Any research that is broadly linked to the wellbeing of the human body, either directly or indirectly, is also within the scope of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信