自适应教学的层次贝叶斯模型

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Alicia M. Chen, Andrew Palacci, Natalia Vélez, Robert D. Hawkins, Samuel J. Gershman
{"title":"自适应教学的层次贝叶斯模型","authors":"Alicia M. Chen,&nbsp;Andrew Palacci,&nbsp;Natalia Vélez,&nbsp;Robert D. Hawkins,&nbsp;Samuel J. Gershman","doi":"10.1111/cogs.13477","DOIUrl":null,"url":null,"abstract":"<p>How do teachers learn about what learners already know? How do learners aid teachers by providing them with information about their background knowledge and what they find confusing? We formalize this collaborative reasoning process using a hierarchical Bayesian model of pedagogy. We then evaluate this model in two online behavioral experiments (<i>N</i> = 312 adults). In Experiment 1, we show that teachers select examples that account for learners' background knowledge, and adjust their examples based on learners' feedback. In Experiment 2, we show that learners strategically provide more feedback when teachers' examples deviate from their background knowledge. These findings provide a foundation for extending computational accounts of pedagogy to richer interactive settings.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cogs.13477","citationCount":"0","resultStr":"{\"title\":\"A Hierarchical Bayesian Model of Adaptive Teaching\",\"authors\":\"Alicia M. Chen,&nbsp;Andrew Palacci,&nbsp;Natalia Vélez,&nbsp;Robert D. Hawkins,&nbsp;Samuel J. Gershman\",\"doi\":\"10.1111/cogs.13477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>How do teachers learn about what learners already know? How do learners aid teachers by providing them with information about their background knowledge and what they find confusing? We formalize this collaborative reasoning process using a hierarchical Bayesian model of pedagogy. We then evaluate this model in two online behavioral experiments (<i>N</i> = 312 adults). In Experiment 1, we show that teachers select examples that account for learners' background knowledge, and adjust their examples based on learners' feedback. In Experiment 2, we show that learners strategically provide more feedback when teachers' examples deviate from their background knowledge. These findings provide a foundation for extending computational accounts of pedagogy to richer interactive settings.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cogs.13477\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cogs.13477\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cogs.13477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

教师如何了解学习者已经掌握的知识?学习者如何通过向教师提供他们的背景知识信息和他们感到困惑的知识来帮助教师?我们使用分层贝叶斯教学法模型将这一合作推理过程正规化。然后,我们在两个在线行为实验(N = 312 名成人)中对这一模型进行了评估。在实验 1 中,我们发现教师在选择例子时会考虑到学习者的背景知识,并根据学习者的反馈调整他们的例子。在实验 2 中,我们发现当教师的示例偏离学习者的背景知识时,学习者会有策略地提供更多反馈。这些发现为将计算教学法扩展到更丰富的互动环境奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Hierarchical Bayesian Model of Adaptive Teaching

A Hierarchical Bayesian Model of Adaptive Teaching

How do teachers learn about what learners already know? How do learners aid teachers by providing them with information about their background knowledge and what they find confusing? We formalize this collaborative reasoning process using a hierarchical Bayesian model of pedagogy. We then evaluate this model in two online behavioral experiments (N = 312 adults). In Experiment 1, we show that teachers select examples that account for learners' background knowledge, and adjust their examples based on learners' feedback. In Experiment 2, we show that learners strategically provide more feedback when teachers' examples deviate from their background knowledge. These findings provide a foundation for extending computational accounts of pedagogy to richer interactive settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信