Chan Su Park, Hyun Jin Park, Ji Hoon Park, Jin Hee Lee, Hyun Jung Kee, Jung-Hoon Park, Jung Hyun Jo, Hee Seung Lee, Cheol Ryong Ku, Jeong Youp Park, Seungmin Bang, Jung Min Song, Kun Na, Sung Kwon Kang, Hwoon-Yong Jung, Moon Jae Chung
{"title":"带有光敏剂的高功能十二指肠支架可用于代谢综合征的光动力疗法:猪模型的可行性和安全性研究。","authors":"Chan Su Park, Hyun Jin Park, Ji Hoon Park, Jin Hee Lee, Hyun Jung Kee, Jung-Hoon Park, Jung Hyun Jo, Hee Seung Lee, Cheol Ryong Ku, Jeong Youp Park, Seungmin Bang, Jung Min Song, Kun Na, Sung Kwon Kang, Hwoon-Yong Jung, Moon Jae Chung","doi":"10.1063/5.0206328","DOIUrl":null,"url":null,"abstract":"<p><p>Duodenal mucosal resurfacing (DMR) by thermal ablation of the duodenal mucosa is a minimally invasive endoscopic procedure for controlling metabolic syndrome (MS). However, thermal energy can cause adverse effects due to deep mucosal injury, necessitating an additional mucosal lifting process, which complicate the procedures. Therefore, we aimed to develop a similar procedure using non-thermal photodynamic therapy (PDT) for DMR using a highly functional metal stent covered with photosensitizers (PSs) to minimize the potential risks of thermal ablation injury. We developed a novel PS stent enabling the controlled release of radical oxygen species with specific structures to prevent stent migration and duodenal stricture after ablation and performed an animal study (n = 8) to demonstrate the feasibility and safety of PDT for DMR. The stents were placed for 7 days to prevent duodenal strictures after PDT. To confirm PDT efficacy, we stained for gastric inhibitory polypeptide (GIP) and glucose transporter isoform 1. The PS stents were deployed, and PDT was applied without evidence of duodenal stricture, pancreatitis, or hemorrhage in any of the pigs. Microscopic evaluation indicated apoptosis of the mucosal cells in the irradiated duodenum on days 7 and 14, which recovered after day 28. Immunohistochemistry revealed suppressed GIP expression in the mucosal wall of the irradiated duodenum. Endoscopic PDT for DMR using PS stents could be applied safely in a porcine model and may result in decreased GIP secretion, which is a crucial mechanism in MS treatment. Further clinical studies are required to explore its safety and efficacy in patients with MS.</p>","PeriodicalId":46288,"journal":{"name":"APL Bioengineering","volume":"8 3","pages":"036103"},"PeriodicalIF":4.1000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232116/pdf/","citationCount":"0","resultStr":"{\"title\":\"Highly functional duodenal stent with photosensitizers enables photodynamic therapy for metabolic syndrome treatment: Feasibility and safety study in a porcine model.\",\"authors\":\"Chan Su Park, Hyun Jin Park, Ji Hoon Park, Jin Hee Lee, Hyun Jung Kee, Jung-Hoon Park, Jung Hyun Jo, Hee Seung Lee, Cheol Ryong Ku, Jeong Youp Park, Seungmin Bang, Jung Min Song, Kun Na, Sung Kwon Kang, Hwoon-Yong Jung, Moon Jae Chung\",\"doi\":\"10.1063/5.0206328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Duodenal mucosal resurfacing (DMR) by thermal ablation of the duodenal mucosa is a minimally invasive endoscopic procedure for controlling metabolic syndrome (MS). However, thermal energy can cause adverse effects due to deep mucosal injury, necessitating an additional mucosal lifting process, which complicate the procedures. Therefore, we aimed to develop a similar procedure using non-thermal photodynamic therapy (PDT) for DMR using a highly functional metal stent covered with photosensitizers (PSs) to minimize the potential risks of thermal ablation injury. We developed a novel PS stent enabling the controlled release of radical oxygen species with specific structures to prevent stent migration and duodenal stricture after ablation and performed an animal study (n = 8) to demonstrate the feasibility and safety of PDT for DMR. The stents were placed for 7 days to prevent duodenal strictures after PDT. To confirm PDT efficacy, we stained for gastric inhibitory polypeptide (GIP) and glucose transporter isoform 1. The PS stents were deployed, and PDT was applied without evidence of duodenal stricture, pancreatitis, or hemorrhage in any of the pigs. Microscopic evaluation indicated apoptosis of the mucosal cells in the irradiated duodenum on days 7 and 14, which recovered after day 28. Immunohistochemistry revealed suppressed GIP expression in the mucosal wall of the irradiated duodenum. Endoscopic PDT for DMR using PS stents could be applied safely in a porcine model and may result in decreased GIP secretion, which is a crucial mechanism in MS treatment. Further clinical studies are required to explore its safety and efficacy in patients with MS.</p>\",\"PeriodicalId\":46288,\"journal\":{\"name\":\"APL Bioengineering\",\"volume\":\"8 3\",\"pages\":\"036103\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232116/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APL Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0206328\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0206328","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Highly functional duodenal stent with photosensitizers enables photodynamic therapy for metabolic syndrome treatment: Feasibility and safety study in a porcine model.
Duodenal mucosal resurfacing (DMR) by thermal ablation of the duodenal mucosa is a minimally invasive endoscopic procedure for controlling metabolic syndrome (MS). However, thermal energy can cause adverse effects due to deep mucosal injury, necessitating an additional mucosal lifting process, which complicate the procedures. Therefore, we aimed to develop a similar procedure using non-thermal photodynamic therapy (PDT) for DMR using a highly functional metal stent covered with photosensitizers (PSs) to minimize the potential risks of thermal ablation injury. We developed a novel PS stent enabling the controlled release of radical oxygen species with specific structures to prevent stent migration and duodenal stricture after ablation and performed an animal study (n = 8) to demonstrate the feasibility and safety of PDT for DMR. The stents were placed for 7 days to prevent duodenal strictures after PDT. To confirm PDT efficacy, we stained for gastric inhibitory polypeptide (GIP) and glucose transporter isoform 1. The PS stents were deployed, and PDT was applied without evidence of duodenal stricture, pancreatitis, or hemorrhage in any of the pigs. Microscopic evaluation indicated apoptosis of the mucosal cells in the irradiated duodenum on days 7 and 14, which recovered after day 28. Immunohistochemistry revealed suppressed GIP expression in the mucosal wall of the irradiated duodenum. Endoscopic PDT for DMR using PS stents could be applied safely in a porcine model and may result in decreased GIP secretion, which is a crucial mechanism in MS treatment. Further clinical studies are required to explore its safety and efficacy in patients with MS.
期刊介绍:
APL Bioengineering is devoted to research at the intersection of biology, physics, and engineering. The journal publishes high-impact manuscripts specific to the understanding and advancement of physics and engineering of biological systems. APL Bioengineering is the new home for the bioengineering and biomedical research communities.
APL Bioengineering publishes original research articles, reviews, and perspectives. Topical coverage includes:
-Biofabrication and Bioprinting
-Biomedical Materials, Sensors, and Imaging
-Engineered Living Systems
-Cell and Tissue Engineering
-Regenerative Medicine
-Molecular, Cell, and Tissue Biomechanics
-Systems Biology and Computational Biology