Xiaofei Ji, Qianwen Wu, Xinying Cao, Shuzhen Liu, Jianhui Zhang, Si Chen, Jiangfan Shan, Ying Zhang, Boqing Li, Huilin Zhao
{"title":"幽门螺杆菌东亚型CagA通过其EPIYA-D基团劫持更多的SHIP2,从而增强致癌能力。","authors":"Xiaofei Ji, Qianwen Wu, Xinying Cao, Shuzhen Liu, Jianhui Zhang, Si Chen, Jiangfan Shan, Ying Zhang, Boqing Li, Huilin Zhao","doi":"10.1080/21505594.2024.2375549","DOIUrl":null,"url":null,"abstract":"<p><p>CagA is a significant oncogenic factor injected into host cells by <i>Helicobacter pylori</i>, which is divided into two subtypes: East Asian type (CagA<sup>E</sup>), characterized by the EPIYA-D motif, and western type (CagA<sup>W</sup>), harboring the EPIYA-C motif. CagA<sup>E</sup> has been reported to have higher carcinogenicity than CagA<sup>W</sup>, although the underlying reason is not fully understood. SHIP2 is an intracellular phosphatase that can be recruited by CagA to perturb the homeostasis of intracellular signaling pathways. In this study, we found that SHIP2 contributes to the higher oncogenicity of CagA<sup>E</sup>. Co-Immunoprecipitation and Pull-down assays showed that CagA<sup>E</sup> bind more SHIP2 than CagA<sup>W</sup>. Immunofluorescence staining showed that a higher amount of SHIP2 recruited by CagA<sup>E</sup> to the plasma membrane catalyzes the conversion of PI(3,4,5)P<sub>3</sub> into PI(3,4)P<sub>2</sub>. This alteration causes higher activation of Akt signaling, which results in enhanced IL-8 secretion, migration, and invasion of the infected cells. SPR analysis showed that this stronger interaction between CagA<sup>E</sup> and SHIP2 stems from the higher affinity between the EPIYA-D motif of CagA<sup>E</sup> and the SH2 domain of SHIP2. Structural analysis revealed the crucial role of the Phe residue at the Y + 5 position in EPIYA-D. After mutating Phe of CagA<sup>E</sup> into Asp (the corresponding residue in the EPIYA-C motif) or Ala, the activation of downstream Akt signaling was reduced and the malignant transformation of infected cells was alleviated. These findings revealed that CagA<sup>E</sup> hijacks SHIP2 through its EPIYA-D motif to enhance its carcinogenicity, which provides a better understanding of the higher oncogenic risk of <i>H. pylori</i> CagA<sup>E</sup>.</p>","PeriodicalId":23747,"journal":{"name":"Virulence","volume":"15 1","pages":"2375549"},"PeriodicalIF":5.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11238919/pdf/","citationCount":"0","resultStr":"{\"title\":\"<i>Helicobacter pylori</i> East Asian type CagA hijacks more SHIP2 by its EPIYA-D motif to potentiate the oncogenicity.\",\"authors\":\"Xiaofei Ji, Qianwen Wu, Xinying Cao, Shuzhen Liu, Jianhui Zhang, Si Chen, Jiangfan Shan, Ying Zhang, Boqing Li, Huilin Zhao\",\"doi\":\"10.1080/21505594.2024.2375549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>CagA is a significant oncogenic factor injected into host cells by <i>Helicobacter pylori</i>, which is divided into two subtypes: East Asian type (CagA<sup>E</sup>), characterized by the EPIYA-D motif, and western type (CagA<sup>W</sup>), harboring the EPIYA-C motif. CagA<sup>E</sup> has been reported to have higher carcinogenicity than CagA<sup>W</sup>, although the underlying reason is not fully understood. SHIP2 is an intracellular phosphatase that can be recruited by CagA to perturb the homeostasis of intracellular signaling pathways. In this study, we found that SHIP2 contributes to the higher oncogenicity of CagA<sup>E</sup>. Co-Immunoprecipitation and Pull-down assays showed that CagA<sup>E</sup> bind more SHIP2 than CagA<sup>W</sup>. Immunofluorescence staining showed that a higher amount of SHIP2 recruited by CagA<sup>E</sup> to the plasma membrane catalyzes the conversion of PI(3,4,5)P<sub>3</sub> into PI(3,4)P<sub>2</sub>. This alteration causes higher activation of Akt signaling, which results in enhanced IL-8 secretion, migration, and invasion of the infected cells. SPR analysis showed that this stronger interaction between CagA<sup>E</sup> and SHIP2 stems from the higher affinity between the EPIYA-D motif of CagA<sup>E</sup> and the SH2 domain of SHIP2. Structural analysis revealed the crucial role of the Phe residue at the Y + 5 position in EPIYA-D. After mutating Phe of CagA<sup>E</sup> into Asp (the corresponding residue in the EPIYA-C motif) or Ala, the activation of downstream Akt signaling was reduced and the malignant transformation of infected cells was alleviated. These findings revealed that CagA<sup>E</sup> hijacks SHIP2 through its EPIYA-D motif to enhance its carcinogenicity, which provides a better understanding of the higher oncogenic risk of <i>H. pylori</i> CagA<sup>E</sup>.</p>\",\"PeriodicalId\":23747,\"journal\":{\"name\":\"Virulence\",\"volume\":\"15 1\",\"pages\":\"2375549\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11238919/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virulence\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/21505594.2024.2375549\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virulence","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/21505594.2024.2375549","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Helicobacter pylori East Asian type CagA hijacks more SHIP2 by its EPIYA-D motif to potentiate the oncogenicity.
CagA is a significant oncogenic factor injected into host cells by Helicobacter pylori, which is divided into two subtypes: East Asian type (CagAE), characterized by the EPIYA-D motif, and western type (CagAW), harboring the EPIYA-C motif. CagAE has been reported to have higher carcinogenicity than CagAW, although the underlying reason is not fully understood. SHIP2 is an intracellular phosphatase that can be recruited by CagA to perturb the homeostasis of intracellular signaling pathways. In this study, we found that SHIP2 contributes to the higher oncogenicity of CagAE. Co-Immunoprecipitation and Pull-down assays showed that CagAE bind more SHIP2 than CagAW. Immunofluorescence staining showed that a higher amount of SHIP2 recruited by CagAE to the plasma membrane catalyzes the conversion of PI(3,4,5)P3 into PI(3,4)P2. This alteration causes higher activation of Akt signaling, which results in enhanced IL-8 secretion, migration, and invasion of the infected cells. SPR analysis showed that this stronger interaction between CagAE and SHIP2 stems from the higher affinity between the EPIYA-D motif of CagAE and the SH2 domain of SHIP2. Structural analysis revealed the crucial role of the Phe residue at the Y + 5 position in EPIYA-D. After mutating Phe of CagAE into Asp (the corresponding residue in the EPIYA-C motif) or Ala, the activation of downstream Akt signaling was reduced and the malignant transformation of infected cells was alleviated. These findings revealed that CagAE hijacks SHIP2 through its EPIYA-D motif to enhance its carcinogenicity, which provides a better understanding of the higher oncogenic risk of H. pylori CagAE.
期刊介绍:
Virulence is a fully open access peer-reviewed journal. All articles will (if accepted) be available for anyone to read anywhere, at any time immediately on publication.
Virulence is the first international peer-reviewed journal of its kind to focus exclusively on microbial pathogenicity, the infection process and host-pathogen interactions. To address the new infectious challenges, emerging infectious agents and antimicrobial resistance, there is a clear need for interdisciplinary research.