{"title":"基于双能 CT 的放射组学模型可确定大脑中动脉闭塞性脑卒中的血栓来源。","authors":"Yuzhu Ma, Yao Dai, Ying Zhao, Ziyang Song, Chunhong Hu, Yu Zhang","doi":"10.1007/s00234-024-03422-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To develop thrombus radiomics models based on dual-energy CT (DECT) for predicting etiologic cause of stroke.</p><p><strong>Methods: </strong>We retrospectively enrolled patients with occlusion of the middle cerebral artery who underwent computed tomography (NCCT) and DECT angiography (DECTA). 70 keV virtual monoenergetic images (simulate conventional 120kVp CTA images) and iodine overlay maps (IOM) were reconstructed for analysis. Five logistic regression radiomics models for predicting cardioembolism (CE) were built based on the features extracted from NCCT, CTA and IOM images. From these, the best one was selected to integrate with clinical information for further construction of the combined model. The performance of the different models was evaluated and compared using ROC curve analysis, clinical decision curves (DCA), calibration curves and Delong test.</p><p><strong>Results: </strong>Among all the radiomic models, model <sub>NCCT+IOM</sub> performed the best, with AUC = 0.95 significantly higher than model <sub>NCCT,</sub> model <sub>CTA</sub>, model <sub>IOM</sub> and model <sub>NCCT+CTA</sub> in the training set (AUC = 0.88, 0.78, 0.90,0.87, respectively, P < 0.05), and AUC = 0.92 in the testing set, significantly higher than model <sub>CTA</sub> (AUC = 0.71, P < 0.05). Smoking and NIHSS score were independent predictors of CE (P < 0.05). The combined model performed similarly to the model <sub>NCCT+IOM</sub>, with no statistically significant difference in AUC either in the training or test sets. (0.96 vs. 0.95; 0.94 vs. 0.92, both P > 0.05).</p><p><strong>Conclusion: </strong>Radiomics models constructed based on NCCT and IOM images can effectively determine the source of thrombus in stroke without relying on clinical information.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radiomics model based on dual-energy CT can determine the source of thrombus in strokes with middle cerebral artery occlusion.\",\"authors\":\"Yuzhu Ma, Yao Dai, Ying Zhao, Ziyang Song, Chunhong Hu, Yu Zhang\",\"doi\":\"10.1007/s00234-024-03422-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To develop thrombus radiomics models based on dual-energy CT (DECT) for predicting etiologic cause of stroke.</p><p><strong>Methods: </strong>We retrospectively enrolled patients with occlusion of the middle cerebral artery who underwent computed tomography (NCCT) and DECT angiography (DECTA). 70 keV virtual monoenergetic images (simulate conventional 120kVp CTA images) and iodine overlay maps (IOM) were reconstructed for analysis. Five logistic regression radiomics models for predicting cardioembolism (CE) were built based on the features extracted from NCCT, CTA and IOM images. From these, the best one was selected to integrate with clinical information for further construction of the combined model. The performance of the different models was evaluated and compared using ROC curve analysis, clinical decision curves (DCA), calibration curves and Delong test.</p><p><strong>Results: </strong>Among all the radiomic models, model <sub>NCCT+IOM</sub> performed the best, with AUC = 0.95 significantly higher than model <sub>NCCT,</sub> model <sub>CTA</sub>, model <sub>IOM</sub> and model <sub>NCCT+CTA</sub> in the training set (AUC = 0.88, 0.78, 0.90,0.87, respectively, P < 0.05), and AUC = 0.92 in the testing set, significantly higher than model <sub>CTA</sub> (AUC = 0.71, P < 0.05). Smoking and NIHSS score were independent predictors of CE (P < 0.05). The combined model performed similarly to the model <sub>NCCT+IOM</sub>, with no statistically significant difference in AUC either in the training or test sets. (0.96 vs. 0.95; 0.94 vs. 0.92, both P > 0.05).</p><p><strong>Conclusion: </strong>Radiomics models constructed based on NCCT and IOM images can effectively determine the source of thrombus in stroke without relying on clinical information.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00234-024-03422-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00234-024-03422-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Radiomics model based on dual-energy CT can determine the source of thrombus in strokes with middle cerebral artery occlusion.
Purpose: To develop thrombus radiomics models based on dual-energy CT (DECT) for predicting etiologic cause of stroke.
Methods: We retrospectively enrolled patients with occlusion of the middle cerebral artery who underwent computed tomography (NCCT) and DECT angiography (DECTA). 70 keV virtual monoenergetic images (simulate conventional 120kVp CTA images) and iodine overlay maps (IOM) were reconstructed for analysis. Five logistic regression radiomics models for predicting cardioembolism (CE) were built based on the features extracted from NCCT, CTA and IOM images. From these, the best one was selected to integrate with clinical information for further construction of the combined model. The performance of the different models was evaluated and compared using ROC curve analysis, clinical decision curves (DCA), calibration curves and Delong test.
Results: Among all the radiomic models, model NCCT+IOM performed the best, with AUC = 0.95 significantly higher than model NCCT, model CTA, model IOM and model NCCT+CTA in the training set (AUC = 0.88, 0.78, 0.90,0.87, respectively, P < 0.05), and AUC = 0.92 in the testing set, significantly higher than model CTA (AUC = 0.71, P < 0.05). Smoking and NIHSS score were independent predictors of CE (P < 0.05). The combined model performed similarly to the model NCCT+IOM, with no statistically significant difference in AUC either in the training or test sets. (0.96 vs. 0.95; 0.94 vs. 0.92, both P > 0.05).
Conclusion: Radiomics models constructed based on NCCT and IOM images can effectively determine the source of thrombus in stroke without relying on clinical information.