Feng Lu, Xiulong Jiang, Kun Lin, Pengfeng Zheng, Shizhong Wu, Guangming Zeng, De Wei
{"title":"致癌基因 CNOT7 促进胶质瘤进展并诱导不良预后","authors":"Feng Lu, Xiulong Jiang, Kun Lin, Pengfeng Zheng, Shizhong Wu, Guangming Zeng, De Wei","doi":"10.1007/s12033-024-01223-5","DOIUrl":null,"url":null,"abstract":"<p><p>Glioma is the most common malignant brain tumor in the central nervous system with the poor prognosis of patients. The CNOT7 (CCR4-NOT Transcription Complex Subunit 7) is an important functional subunit of CCR4-NOT protein complex that has not been reported in glioma. In this study, we aimed to explore the function of CNOT7 in glioma. The TCGA (The Cancer Genome Atlas) and CGGA (Chinese Glioma Genome Atlas) databases were used for investigating the expression and survival condition of CNOT7 in glioma. The cellular function experiments of qRT-PCR, CCK-8 assays, wound healing assays, and Transwell assays were conducted to verify the function of knockdown CNOT7 in the glioma cell lines DBTRG and U251. Enrichment analysis was used to explore the molecular mechanism of CONT7 in glioma. What is more, the upstream regulation transcription factors of CNOT7 were analyzed based on the ChIP-Atlas and cBioportal (provisional) databases, and verified by the qRT-PCR and luciferase reporter assay. The CNOT7 was highly expressed in glioma and presented the poorer prognosis. The knockdown of CNOT7 inhibited the proliferation, migration, and invasion of glioma cell line, compared to control group. The enrichment analysis revealed that the CNOT7 participated in the development of glioma via G2M checkpoint, E2F targets, IL6-JAK-STAT3, and TNF-α signaling pathways via NF-κB. Besides, it was found that the HDAC2 (Human histone deacetylase-2) contributes to increased CNOT7 expression in glioma. The high-expressed CNOT7 is an oncogene with poor prognosis and participate the progression of glioma.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"2607-2616"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12119661/pdf/","citationCount":"0","resultStr":"{\"title\":\"Oncogenic Gene CNOT7 Promotes Progression and Induces Poor Prognosis of Glioma.\",\"authors\":\"Feng Lu, Xiulong Jiang, Kun Lin, Pengfeng Zheng, Shizhong Wu, Guangming Zeng, De Wei\",\"doi\":\"10.1007/s12033-024-01223-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glioma is the most common malignant brain tumor in the central nervous system with the poor prognosis of patients. The CNOT7 (CCR4-NOT Transcription Complex Subunit 7) is an important functional subunit of CCR4-NOT protein complex that has not been reported in glioma. In this study, we aimed to explore the function of CNOT7 in glioma. The TCGA (The Cancer Genome Atlas) and CGGA (Chinese Glioma Genome Atlas) databases were used for investigating the expression and survival condition of CNOT7 in glioma. The cellular function experiments of qRT-PCR, CCK-8 assays, wound healing assays, and Transwell assays were conducted to verify the function of knockdown CNOT7 in the glioma cell lines DBTRG and U251. Enrichment analysis was used to explore the molecular mechanism of CONT7 in glioma. What is more, the upstream regulation transcription factors of CNOT7 were analyzed based on the ChIP-Atlas and cBioportal (provisional) databases, and verified by the qRT-PCR and luciferase reporter assay. The CNOT7 was highly expressed in glioma and presented the poorer prognosis. The knockdown of CNOT7 inhibited the proliferation, migration, and invasion of glioma cell line, compared to control group. The enrichment analysis revealed that the CNOT7 participated in the development of glioma via G2M checkpoint, E2F targets, IL6-JAK-STAT3, and TNF-α signaling pathways via NF-κB. Besides, it was found that the HDAC2 (Human histone deacetylase-2) contributes to increased CNOT7 expression in glioma. The high-expressed CNOT7 is an oncogene with poor prognosis and participate the progression of glioma.</p>\",\"PeriodicalId\":18865,\"journal\":{\"name\":\"Molecular Biotechnology\",\"volume\":\" \",\"pages\":\"2607-2616\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12119661/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Biotechnology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12033-024-01223-5\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-024-01223-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Oncogenic Gene CNOT7 Promotes Progression and Induces Poor Prognosis of Glioma.
Glioma is the most common malignant brain tumor in the central nervous system with the poor prognosis of patients. The CNOT7 (CCR4-NOT Transcription Complex Subunit 7) is an important functional subunit of CCR4-NOT protein complex that has not been reported in glioma. In this study, we aimed to explore the function of CNOT7 in glioma. The TCGA (The Cancer Genome Atlas) and CGGA (Chinese Glioma Genome Atlas) databases were used for investigating the expression and survival condition of CNOT7 in glioma. The cellular function experiments of qRT-PCR, CCK-8 assays, wound healing assays, and Transwell assays were conducted to verify the function of knockdown CNOT7 in the glioma cell lines DBTRG and U251. Enrichment analysis was used to explore the molecular mechanism of CONT7 in glioma. What is more, the upstream regulation transcription factors of CNOT7 were analyzed based on the ChIP-Atlas and cBioportal (provisional) databases, and verified by the qRT-PCR and luciferase reporter assay. The CNOT7 was highly expressed in glioma and presented the poorer prognosis. The knockdown of CNOT7 inhibited the proliferation, migration, and invasion of glioma cell line, compared to control group. The enrichment analysis revealed that the CNOT7 participated in the development of glioma via G2M checkpoint, E2F targets, IL6-JAK-STAT3, and TNF-α signaling pathways via NF-κB. Besides, it was found that the HDAC2 (Human histone deacetylase-2) contributes to increased CNOT7 expression in glioma. The high-expressed CNOT7 is an oncogene with poor prognosis and participate the progression of glioma.
期刊介绍:
Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.