{"title":"两个气候截然不同的同种春尾种群的表型可塑性和温度反应的热效率。","authors":"Sagnik Sengupta , Hans Petter Leinaas","doi":"10.1016/j.jtherbio.2024.103914","DOIUrl":null,"url":null,"abstract":"<div><p>Temperature drives adaptation in life-history traits through direct effects on physiological processes. However, multiple life-history traits co-evolve as a life-history strategy. Therefore, physiological limitations constraining the evolution of trait means and phenotypic plasticity can be larger for some traits than the others. Comparisons of thermal responses across life-history traits can improve our understanding of the mechanisms determining the life-history strategies. In the present study, we focused on a soil microarthropod species abundant across the Northern Hemisphere, <em>Folsomia quadrioculata</em> (Collembola), with previously known effects of macroclimate. We selected an arctic and a temperate population from areas with highly contrasting climates — the arctic tundra and a coniferous forest floor, respectively — and compared them for thermal plasticity and thermal efficiency in growth, development, fecundity, and survival across four temperatures for a major part of their life cycle. We intended to understand the mechanisms by which temperature drives the evolution of life-history strategies. We found that the temperate population maximized performance at 10–15 °C, whereas the arctic population maintained its thermal efficiency across a wider temperature range (10–20 °C). Thermal plasticity varied in a trait-specific manner, and when considered together with differences in thermal efficiency, indicated that stochasticity in temperature conditions may be important in shaping the life-history strategies. Our study suggests that adopting a whole-organism approach and including physiological time considerations while analysing thermal adaptation will markedly improve our understanding of plausible links between thermal adaptation and responses to global climate change.</p></div>","PeriodicalId":17428,"journal":{"name":"Journal of thermal biology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0306456524001323/pdfft?md5=fa1975a05fd0ff355d2eee7fad55f864&pid=1-s2.0-S0306456524001323-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Phenotypic plasticity and thermal efficiency of temperature responses in two conspecific springtail populations from contrasting climates\",\"authors\":\"Sagnik Sengupta , Hans Petter Leinaas\",\"doi\":\"10.1016/j.jtherbio.2024.103914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Temperature drives adaptation in life-history traits through direct effects on physiological processes. However, multiple life-history traits co-evolve as a life-history strategy. Therefore, physiological limitations constraining the evolution of trait means and phenotypic plasticity can be larger for some traits than the others. Comparisons of thermal responses across life-history traits can improve our understanding of the mechanisms determining the life-history strategies. In the present study, we focused on a soil microarthropod species abundant across the Northern Hemisphere, <em>Folsomia quadrioculata</em> (Collembola), with previously known effects of macroclimate. We selected an arctic and a temperate population from areas with highly contrasting climates — the arctic tundra and a coniferous forest floor, respectively — and compared them for thermal plasticity and thermal efficiency in growth, development, fecundity, and survival across four temperatures for a major part of their life cycle. We intended to understand the mechanisms by which temperature drives the evolution of life-history strategies. We found that the temperate population maximized performance at 10–15 °C, whereas the arctic population maintained its thermal efficiency across a wider temperature range (10–20 °C). Thermal plasticity varied in a trait-specific manner, and when considered together with differences in thermal efficiency, indicated that stochasticity in temperature conditions may be important in shaping the life-history strategies. Our study suggests that adopting a whole-organism approach and including physiological time considerations while analysing thermal adaptation will markedly improve our understanding of plausible links between thermal adaptation and responses to global climate change.</p></div>\",\"PeriodicalId\":17428,\"journal\":{\"name\":\"Journal of thermal biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0306456524001323/pdfft?md5=fa1975a05fd0ff355d2eee7fad55f864&pid=1-s2.0-S0306456524001323-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of thermal biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306456524001323\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of thermal biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306456524001323","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Phenotypic plasticity and thermal efficiency of temperature responses in two conspecific springtail populations from contrasting climates
Temperature drives adaptation in life-history traits through direct effects on physiological processes. However, multiple life-history traits co-evolve as a life-history strategy. Therefore, physiological limitations constraining the evolution of trait means and phenotypic plasticity can be larger for some traits than the others. Comparisons of thermal responses across life-history traits can improve our understanding of the mechanisms determining the life-history strategies. In the present study, we focused on a soil microarthropod species abundant across the Northern Hemisphere, Folsomia quadrioculata (Collembola), with previously known effects of macroclimate. We selected an arctic and a temperate population from areas with highly contrasting climates — the arctic tundra and a coniferous forest floor, respectively — and compared them for thermal plasticity and thermal efficiency in growth, development, fecundity, and survival across four temperatures for a major part of their life cycle. We intended to understand the mechanisms by which temperature drives the evolution of life-history strategies. We found that the temperate population maximized performance at 10–15 °C, whereas the arctic population maintained its thermal efficiency across a wider temperature range (10–20 °C). Thermal plasticity varied in a trait-specific manner, and when considered together with differences in thermal efficiency, indicated that stochasticity in temperature conditions may be important in shaping the life-history strategies. Our study suggests that adopting a whole-organism approach and including physiological time considerations while analysing thermal adaptation will markedly improve our understanding of plausible links between thermal adaptation and responses to global climate change.
期刊介绍:
The Journal of Thermal Biology publishes articles that advance our knowledge on the ways and mechanisms through which temperature affects man and animals. This includes studies of their responses to these effects and on the ecological consequences. Directly relevant to this theme are:
• The mechanisms of thermal limitation, heat and cold injury, and the resistance of organisms to extremes of temperature
• The mechanisms involved in acclimation, acclimatization and evolutionary adaptation to temperature
• Mechanisms underlying the patterns of hibernation, torpor, dormancy, aestivation and diapause
• Effects of temperature on reproduction and development, growth, ageing and life-span
• Studies on modelling heat transfer between organisms and their environment
• The contributions of temperature to effects of climate change on animal species and man
• Studies of conservation biology and physiology related to temperature
• Behavioural and physiological regulation of body temperature including its pathophysiology and fever
• Medical applications of hypo- and hyperthermia
Article types:
• Original articles
• Review articles