Pierre Bougnères, Sophie Le Fur, Yoichiro Kamatani, Thanh-Nga Mai, Marie-Pierre Belot, Kevin Perge, the Isis-Diab group, XiaoJian Shao, Mark Lathrop, Alain-Jacques Valleron
{"title":"与儿童发病型 1 型糖尿病确诊年龄相关的基因组变异。","authors":"Pierre Bougnères, Sophie Le Fur, Yoichiro Kamatani, Thanh-Nga Mai, Marie-Pierre Belot, Kevin Perge, the Isis-Diab group, XiaoJian Shao, Mark Lathrop, Alain-Jacques Valleron","doi":"10.1038/s10038-024-01272-3","DOIUrl":null,"url":null,"abstract":"Age at diagnosis (AAD) of Type 1 diabetes (T1D) is determined by the age at onset of the autoimmune attack and by the rate of beta cell destruction that follows. Twin studies found that T1D AAD is strongly influenced by genetics, notably in young children. In young UK, Finnish, Sardinian patients AAD-associated genomic variants were previously identified, which may vary across populations and with time. In 1956 children of European ancestry born in mainland France in 1980-2008 who declared T1D before 15 years, we tested 94 T1D-associated SNPs for their association with AAD using nonparametric Kruskal–Wallis test. While high-risk HLA genotypes were not found to be associated with AAD, fourteen SNPs located in 12 non-HLA loci showed a strong association (2.9 × 10−12 < P < 1.4 × 10−3 after FDR correction). Four of these loci have been associated with AAD in previous cohorts (GSDMB, IL2, TNFAIP3, IL1), supporting a partially shared genetic influence on AAD of T1D in the studied European populations. In contrast, the association of 8 new loci CLEC16A, TYK2, ERBB3, CCR7, FCRL3, DNAH2, FGF3/4, and HPSE2 with AAD is novel. The 12 protein-coding genes located within these loci are involved in major immune pathways or in predisposition to other autoimmune diseases, which suggests a prominent role for these genes in the early immune mechanisms of beta cell destruction.","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":"69 11","pages":"585-590"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genomic variants associated with age at diagnosis of childhood-onset type 1 diabetes\",\"authors\":\"Pierre Bougnères, Sophie Le Fur, Yoichiro Kamatani, Thanh-Nga Mai, Marie-Pierre Belot, Kevin Perge, the Isis-Diab group, XiaoJian Shao, Mark Lathrop, Alain-Jacques Valleron\",\"doi\":\"10.1038/s10038-024-01272-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Age at diagnosis (AAD) of Type 1 diabetes (T1D) is determined by the age at onset of the autoimmune attack and by the rate of beta cell destruction that follows. Twin studies found that T1D AAD is strongly influenced by genetics, notably in young children. In young UK, Finnish, Sardinian patients AAD-associated genomic variants were previously identified, which may vary across populations and with time. In 1956 children of European ancestry born in mainland France in 1980-2008 who declared T1D before 15 years, we tested 94 T1D-associated SNPs for their association with AAD using nonparametric Kruskal–Wallis test. While high-risk HLA genotypes were not found to be associated with AAD, fourteen SNPs located in 12 non-HLA loci showed a strong association (2.9 × 10−12 < P < 1.4 × 10−3 after FDR correction). Four of these loci have been associated with AAD in previous cohorts (GSDMB, IL2, TNFAIP3, IL1), supporting a partially shared genetic influence on AAD of T1D in the studied European populations. In contrast, the association of 8 new loci CLEC16A, TYK2, ERBB3, CCR7, FCRL3, DNAH2, FGF3/4, and HPSE2 with AAD is novel. The 12 protein-coding genes located within these loci are involved in major immune pathways or in predisposition to other autoimmune diseases, which suggests a prominent role for these genes in the early immune mechanisms of beta cell destruction.\",\"PeriodicalId\":16077,\"journal\":{\"name\":\"Journal of Human Genetics\",\"volume\":\"69 11\",\"pages\":\"585-590\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Human Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s10038-024-01272-3\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s10038-024-01272-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Genomic variants associated with age at diagnosis of childhood-onset type 1 diabetes
Age at diagnosis (AAD) of Type 1 diabetes (T1D) is determined by the age at onset of the autoimmune attack and by the rate of beta cell destruction that follows. Twin studies found that T1D AAD is strongly influenced by genetics, notably in young children. In young UK, Finnish, Sardinian patients AAD-associated genomic variants were previously identified, which may vary across populations and with time. In 1956 children of European ancestry born in mainland France in 1980-2008 who declared T1D before 15 years, we tested 94 T1D-associated SNPs for their association with AAD using nonparametric Kruskal–Wallis test. While high-risk HLA genotypes were not found to be associated with AAD, fourteen SNPs located in 12 non-HLA loci showed a strong association (2.9 × 10−12 < P < 1.4 × 10−3 after FDR correction). Four of these loci have been associated with AAD in previous cohorts (GSDMB, IL2, TNFAIP3, IL1), supporting a partially shared genetic influence on AAD of T1D in the studied European populations. In contrast, the association of 8 new loci CLEC16A, TYK2, ERBB3, CCR7, FCRL3, DNAH2, FGF3/4, and HPSE2 with AAD is novel. The 12 protein-coding genes located within these loci are involved in major immune pathways or in predisposition to other autoimmune diseases, which suggests a prominent role for these genes in the early immune mechanisms of beta cell destruction.
期刊介绍:
The Journal of Human Genetics is an international journal publishing articles on human genetics, including medical genetics and human genome analysis. It covers all aspects of human genetics, including molecular genetics, clinical genetics, behavioral genetics, immunogenetics, pharmacogenomics, population genetics, functional genomics, epigenetics, genetic counseling and gene therapy.
Articles on the following areas are especially welcome: genetic factors of monogenic and complex disorders, genome-wide association studies, genetic epidemiology, cancer genetics, personal genomics, genotype-phenotype relationships and genome diversity.