Ping Yang, Peng Xie, Feng Lin, Tian Wang, Lian Zhang, Fei Yan
{"title":"合成两种荧光复合物并将其用作治疗横纹肌肉瘤的多功能纳米药物载体","authors":"Ping Yang, Peng Xie, Feng Lin, Tian Wang, Lian Zhang, Fei Yan","doi":"10.1007/s10895-024-03832-4","DOIUrl":null,"url":null,"abstract":"<p><p>This study focuses on the design and synthesis of two novel coordination polymers (CPs), named 1 and 2, with excellent fluorescent properties. Their structures were characterized by X-ray single-crystal diffraction, revealing that both materials exhibit promising fluorescence performance, indicating their potential as fluorescent detection tools. Additionally, 1 was chosen to be combined with chitosan (CS), resulting in the successful fabrication of a biodegradable and non-toxic efficient drug carrier, termed CS-1@Cisplatin. This carrier possesses a large surface area and good solubility, enabling sustained drug release to target cells. Given that CXC motif chemokine receptor type 4 (CXCR4) is a key marker gene highly expressed in Rhabdomyosarcoma (RMS) cells and tissues, RMS was chosen as the biological model for testing. The results demonstrated that CS-1@Cisplatin effectively inhibited the invasiveness of RMS cells by significantly suppressing CXCR4 expression. Therefore, the system shows great potential for applications in RMS treatment, biometrics, and drug delivery, particularly in its unique advantage of targeting RMS by inhibiting the key marker gene CXCR4.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":"4313-4320"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of two Fluorescent Complexes and Their use as Multifunctional Nanomedicine Carriers for Rhabdomyosarcoma Treatment.\",\"authors\":\"Ping Yang, Peng Xie, Feng Lin, Tian Wang, Lian Zhang, Fei Yan\",\"doi\":\"10.1007/s10895-024-03832-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study focuses on the design and synthesis of two novel coordination polymers (CPs), named 1 and 2, with excellent fluorescent properties. Their structures were characterized by X-ray single-crystal diffraction, revealing that both materials exhibit promising fluorescence performance, indicating their potential as fluorescent detection tools. Additionally, 1 was chosen to be combined with chitosan (CS), resulting in the successful fabrication of a biodegradable and non-toxic efficient drug carrier, termed CS-1@Cisplatin. This carrier possesses a large surface area and good solubility, enabling sustained drug release to target cells. Given that CXC motif chemokine receptor type 4 (CXCR4) is a key marker gene highly expressed in Rhabdomyosarcoma (RMS) cells and tissues, RMS was chosen as the biological model for testing. The results demonstrated that CS-1@Cisplatin effectively inhibited the invasiveness of RMS cells by significantly suppressing CXCR4 expression. Therefore, the system shows great potential for applications in RMS treatment, biometrics, and drug delivery, particularly in its unique advantage of targeting RMS by inhibiting the key marker gene CXCR4.</p>\",\"PeriodicalId\":15800,\"journal\":{\"name\":\"Journal of Fluorescence\",\"volume\":\" \",\"pages\":\"4313-4320\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluorescence\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s10895-024-03832-4\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-024-03832-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Synthesis of two Fluorescent Complexes and Their use as Multifunctional Nanomedicine Carriers for Rhabdomyosarcoma Treatment.
This study focuses on the design and synthesis of two novel coordination polymers (CPs), named 1 and 2, with excellent fluorescent properties. Their structures were characterized by X-ray single-crystal diffraction, revealing that both materials exhibit promising fluorescence performance, indicating their potential as fluorescent detection tools. Additionally, 1 was chosen to be combined with chitosan (CS), resulting in the successful fabrication of a biodegradable and non-toxic efficient drug carrier, termed CS-1@Cisplatin. This carrier possesses a large surface area and good solubility, enabling sustained drug release to target cells. Given that CXC motif chemokine receptor type 4 (CXCR4) is a key marker gene highly expressed in Rhabdomyosarcoma (RMS) cells and tissues, RMS was chosen as the biological model for testing. The results demonstrated that CS-1@Cisplatin effectively inhibited the invasiveness of RMS cells by significantly suppressing CXCR4 expression. Therefore, the system shows great potential for applications in RMS treatment, biometrics, and drug delivery, particularly in its unique advantage of targeting RMS by inhibiting the key marker gene CXCR4.
期刊介绍:
Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.