Ida Naughton, Neil D Tsutsui, Philip S Ward, David A Holway
{"title":"岛屿和大陆蚂蚁种群遗传多样性和种群遗传结构的集合级比较。","authors":"Ida Naughton, Neil D Tsutsui, Philip S Ward, David A Holway","doi":"10.1093/evolut/qpae103","DOIUrl":null,"url":null,"abstract":"<p><p>Island biotas provide unparalleled opportunities to examine evolutionary processes. Founder effects and bottlenecks, e.g., typically decrease genetic diversity in island populations, while selection for reduced dispersal can increase population structure. Given that support for these generalities mostly comes from single-species analyses, assemblage-level comparisons are needed to clarify how (i) colonization affects the gene pools of interacting insular organisms, and (ii) patterns of genetic differentiation vary within assemblages of organisms. Here, we use genome-wide sequence data from ultraconserved elements (UCEs) to compare the genetic diversity and population structure of mainland and island populations of nine ant species in coastal southern California. As expected, island populations (from Santa Cruz Island) had lower expected heterozygosity and Watterson's theta compared to mainland populations (from the Lompoc Valley). Island populations, however, exhibited smaller genetic distances among samples, indicating less population subdivision. Within the focal assemblage, pairwise Fst values revealed pronounced interspecific variation in mainland-island differentiation, which increases with gyne body size. Our results reveal population differences across an assemblage of interacting species and illuminate general patterns of insularization in ants. Compared to single-species studies, our analysis of nine conspecific population pairs from the same island-mainland system offers a powerful approach to studying fundamental evolutionary processes.</p>","PeriodicalId":12082,"journal":{"name":"Evolution","volume":" ","pages":"1685-1698"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An assemblage-level comparison of genetic diversity and population genetic structure between island and mainland ant populations.\",\"authors\":\"Ida Naughton, Neil D Tsutsui, Philip S Ward, David A Holway\",\"doi\":\"10.1093/evolut/qpae103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Island biotas provide unparalleled opportunities to examine evolutionary processes. Founder effects and bottlenecks, e.g., typically decrease genetic diversity in island populations, while selection for reduced dispersal can increase population structure. Given that support for these generalities mostly comes from single-species analyses, assemblage-level comparisons are needed to clarify how (i) colonization affects the gene pools of interacting insular organisms, and (ii) patterns of genetic differentiation vary within assemblages of organisms. Here, we use genome-wide sequence data from ultraconserved elements (UCEs) to compare the genetic diversity and population structure of mainland and island populations of nine ant species in coastal southern California. As expected, island populations (from Santa Cruz Island) had lower expected heterozygosity and Watterson's theta compared to mainland populations (from the Lompoc Valley). Island populations, however, exhibited smaller genetic distances among samples, indicating less population subdivision. Within the focal assemblage, pairwise Fst values revealed pronounced interspecific variation in mainland-island differentiation, which increases with gyne body size. Our results reveal population differences across an assemblage of interacting species and illuminate general patterns of insularization in ants. Compared to single-species studies, our analysis of nine conspecific population pairs from the same island-mainland system offers a powerful approach to studying fundamental evolutionary processes.</p>\",\"PeriodicalId\":12082,\"journal\":{\"name\":\"Evolution\",\"volume\":\" \",\"pages\":\"1685-1698\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolution\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1093/evolut/qpae103\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/evolut/qpae103","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
An assemblage-level comparison of genetic diversity and population genetic structure between island and mainland ant populations.
Island biotas provide unparalleled opportunities to examine evolutionary processes. Founder effects and bottlenecks, e.g., typically decrease genetic diversity in island populations, while selection for reduced dispersal can increase population structure. Given that support for these generalities mostly comes from single-species analyses, assemblage-level comparisons are needed to clarify how (i) colonization affects the gene pools of interacting insular organisms, and (ii) patterns of genetic differentiation vary within assemblages of organisms. Here, we use genome-wide sequence data from ultraconserved elements (UCEs) to compare the genetic diversity and population structure of mainland and island populations of nine ant species in coastal southern California. As expected, island populations (from Santa Cruz Island) had lower expected heterozygosity and Watterson's theta compared to mainland populations (from the Lompoc Valley). Island populations, however, exhibited smaller genetic distances among samples, indicating less population subdivision. Within the focal assemblage, pairwise Fst values revealed pronounced interspecific variation in mainland-island differentiation, which increases with gyne body size. Our results reveal population differences across an assemblage of interacting species and illuminate general patterns of insularization in ants. Compared to single-species studies, our analysis of nine conspecific population pairs from the same island-mainland system offers a powerful approach to studying fundamental evolutionary processes.
期刊介绍:
Evolution, published for the Society for the Study of Evolution, is the premier publication devoted to the study of organic evolution and the integration of the various fields of science concerned with evolution. The journal presents significant and original results that extend our understanding of evolutionary phenomena and processes.