{"title":"荨麻精油的 GC-MS/MS 分析和伤口修复潜力:硅模型和大鼠体内研究。","authors":"Ahlem Chira, Yassine Kadmi, Riadh Badraoui, Kaïss Aouadi, Fahad Alhawday, Mariem Boudaya, Kamel Jamoussi, Choumous Kallel, Abdelfattah El Feki, Adel Kadri, Mongi Saoudi","doi":"10.2174/0113892010304346240619061848","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The study aimed to assess the antioxidant and wound healing properties of Urtica dioica essential oil (UDEO) through a comprehensive evaluation involving in silico, in vitro, and in vivo analyses. The phytochemistry of UDEO was also investigated to identify trace compounds crucial.</p><p><strong>Methods: </strong>Various injection methods of the multimode inlet (MMI) in chromatography were investigated to attain lower instrumental detection limits. Subsequently, in silico studies were employed to delve deeper into the potential biological activities of the identified compounds. Standard antioxidative tests, encompassing ABTS•+ and TAC, were performed. In vivo tests centered on wound healing were implemented using rat models. The rats were randomly allocated to four groups: saline solution, vaseline vehicle, cytol centella, and 5% UDEO ointment. Wound healing progress was evaluated through a chromatic study.</p><p><strong>Results: </strong>Gas chromatography combined with triple quadrupole mass spectrometry (GC-MS/MS) analysis revealed the presence of 97 thermolabile compounds in UDEO. Subsequent in silico studies unveiled the potential of identified compounds to inhibit COX-2, TNF-α, and IL-6, suggesting a possible enhancement of anti-inflammatory responses and healing processes. In vitro tests elucidated the notable antioxidant capacity of UDEO, a finding reinforced by wound healing data, revealing a substantial closure rate of 89% following the topical application of UDEO. Notably, fibrinogen and C-reactive protein (CRP) levels were significantly reduced, indicating minimized oxidative stress damage compared to control. Additionally, UDEO exhibited an increase in antioxidant enzyme activities compared to control.</p><p><strong>Conclusion: </strong>The study concludes that UDEO possesses significant antioxidant and wound-healing properties, supported by its rich phytochemical composition. The findings suggest its potential application in therapeutic interventions for oxidative stress and inflammatory conditions.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GC-MS/MS Analysis and Wound Repair Potential of Urtica dioica Essential Oil: In silico Modeling and In vivo Study in Rats.\",\"authors\":\"Ahlem Chira, Yassine Kadmi, Riadh Badraoui, Kaïss Aouadi, Fahad Alhawday, Mariem Boudaya, Kamel Jamoussi, Choumous Kallel, Abdelfattah El Feki, Adel Kadri, Mongi Saoudi\",\"doi\":\"10.2174/0113892010304346240619061848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The study aimed to assess the antioxidant and wound healing properties of Urtica dioica essential oil (UDEO) through a comprehensive evaluation involving in silico, in vitro, and in vivo analyses. The phytochemistry of UDEO was also investigated to identify trace compounds crucial.</p><p><strong>Methods: </strong>Various injection methods of the multimode inlet (MMI) in chromatography were investigated to attain lower instrumental detection limits. Subsequently, in silico studies were employed to delve deeper into the potential biological activities of the identified compounds. Standard antioxidative tests, encompassing ABTS•+ and TAC, were performed. In vivo tests centered on wound healing were implemented using rat models. The rats were randomly allocated to four groups: saline solution, vaseline vehicle, cytol centella, and 5% UDEO ointment. Wound healing progress was evaluated through a chromatic study.</p><p><strong>Results: </strong>Gas chromatography combined with triple quadrupole mass spectrometry (GC-MS/MS) analysis revealed the presence of 97 thermolabile compounds in UDEO. Subsequent in silico studies unveiled the potential of identified compounds to inhibit COX-2, TNF-α, and IL-6, suggesting a possible enhancement of anti-inflammatory responses and healing processes. In vitro tests elucidated the notable antioxidant capacity of UDEO, a finding reinforced by wound healing data, revealing a substantial closure rate of 89% following the topical application of UDEO. Notably, fibrinogen and C-reactive protein (CRP) levels were significantly reduced, indicating minimized oxidative stress damage compared to control. Additionally, UDEO exhibited an increase in antioxidant enzyme activities compared to control.</p><p><strong>Conclusion: </strong>The study concludes that UDEO possesses significant antioxidant and wound-healing properties, supported by its rich phytochemical composition. The findings suggest its potential application in therapeutic interventions for oxidative stress and inflammatory conditions.</p>\",\"PeriodicalId\":10881,\"journal\":{\"name\":\"Current pharmaceutical biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current pharmaceutical biotechnology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113892010304346240619061848\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892010304346240619061848","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
GC-MS/MS Analysis and Wound Repair Potential of Urtica dioica Essential Oil: In silico Modeling and In vivo Study in Rats.
Background: The study aimed to assess the antioxidant and wound healing properties of Urtica dioica essential oil (UDEO) through a comprehensive evaluation involving in silico, in vitro, and in vivo analyses. The phytochemistry of UDEO was also investigated to identify trace compounds crucial.
Methods: Various injection methods of the multimode inlet (MMI) in chromatography were investigated to attain lower instrumental detection limits. Subsequently, in silico studies were employed to delve deeper into the potential biological activities of the identified compounds. Standard antioxidative tests, encompassing ABTS•+ and TAC, were performed. In vivo tests centered on wound healing were implemented using rat models. The rats were randomly allocated to four groups: saline solution, vaseline vehicle, cytol centella, and 5% UDEO ointment. Wound healing progress was evaluated through a chromatic study.
Results: Gas chromatography combined with triple quadrupole mass spectrometry (GC-MS/MS) analysis revealed the presence of 97 thermolabile compounds in UDEO. Subsequent in silico studies unveiled the potential of identified compounds to inhibit COX-2, TNF-α, and IL-6, suggesting a possible enhancement of anti-inflammatory responses and healing processes. In vitro tests elucidated the notable antioxidant capacity of UDEO, a finding reinforced by wound healing data, revealing a substantial closure rate of 89% following the topical application of UDEO. Notably, fibrinogen and C-reactive protein (CRP) levels were significantly reduced, indicating minimized oxidative stress damage compared to control. Additionally, UDEO exhibited an increase in antioxidant enzyme activities compared to control.
Conclusion: The study concludes that UDEO possesses significant antioxidant and wound-healing properties, supported by its rich phytochemical composition. The findings suggest its potential application in therapeutic interventions for oxidative stress and inflammatory conditions.
期刊介绍:
Current Pharmaceutical Biotechnology aims to cover all the latest and outstanding developments in Pharmaceutical Biotechnology. Each issue of the journal includes timely in-depth reviews, original research articles and letters written by leaders in the field, covering a range of current topics in scientific areas of Pharmaceutical Biotechnology. Invited and unsolicited review articles are welcome. The journal encourages contributions describing research at the interface of drug discovery and pharmacological applications, involving in vitro investigations and pre-clinical or clinical studies. Scientific areas within the scope of the journal include pharmaceutical chemistry, biochemistry and genetics, molecular and cellular biology, and polymer and materials sciences as they relate to pharmaceutical science and biotechnology. In addition, the journal also considers comprehensive studies and research advances pertaining food chemistry with pharmaceutical implication. Areas of interest include:
DNA/protein engineering and processing
Synthetic biotechnology
Omics (genomics, proteomics, metabolomics and systems biology)
Therapeutic biotechnology (gene therapy, peptide inhibitors, enzymes)
Drug delivery and targeting
Nanobiotechnology
Molecular pharmaceutics and molecular pharmacology
Analytical biotechnology (biosensing, advanced technology for detection of bioanalytes)
Pharmacokinetics and pharmacodynamics
Applied Microbiology
Bioinformatics (computational biopharmaceutics and modeling)
Environmental biotechnology
Regenerative medicine (stem cells, tissue engineering and biomaterials)
Translational immunology (cell therapies, antibody engineering, xenotransplantation)
Industrial bioprocesses for drug production and development
Biosafety
Biotech ethics
Special Issues devoted to crucial topics, providing the latest comprehensive information on cutting-edge areas of research and technological advances, are welcome.
Current Pharmaceutical Biotechnology is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments.