大型语言模型正在改变学术出版物的格局。积极的转变?

Q4 Medicine
Casopis lekaru ceskych Pub Date : 2024-01-01
Martin Májovský, Martin Černý, David Netuka
{"title":"大型语言模型正在改变学术出版物的格局。积极的转变?","authors":"Martin Májovský, Martin Černý, David Netuka","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The advent of large language models (LLMs) based on neural networks marks a significant shift in academic writing, particularly in medical sciences. These models, including OpenAI's GPT-4, Google's Bard, and Anthropic's Claude, enable more efficient text processing through transformer architecture and attention mechanisms. LLMs can generate coherent texts that are indistinguishable from human-written content. In medicine, they can contribute to the automation of literature reviews, data extraction, and hypothesis formulation. However, ethical concerns arise regarding the quality and integrity of scientific publications and the risk of generating misleading content. This article provides an overview of how LLMs are changing medical writing, the ethical dilemmas they bring, and the possibilities for detecting AI-generated text. It concludes with a focus on the potential future of LLMs in academic publishing and their impact on the medical community.</p>","PeriodicalId":9645,"journal":{"name":"Casopis lekaru ceskych","volume":"162 7-8","pages":"294-297"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large language models are changing landscape of academic publications. A positive transformation?\",\"authors\":\"Martin Májovský, Martin Černý, David Netuka\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The advent of large language models (LLMs) based on neural networks marks a significant shift in academic writing, particularly in medical sciences. These models, including OpenAI's GPT-4, Google's Bard, and Anthropic's Claude, enable more efficient text processing through transformer architecture and attention mechanisms. LLMs can generate coherent texts that are indistinguishable from human-written content. In medicine, they can contribute to the automation of literature reviews, data extraction, and hypothesis formulation. However, ethical concerns arise regarding the quality and integrity of scientific publications and the risk of generating misleading content. This article provides an overview of how LLMs are changing medical writing, the ethical dilemmas they bring, and the possibilities for detecting AI-generated text. It concludes with a focus on the potential future of LLMs in academic publishing and their impact on the medical community.</p>\",\"PeriodicalId\":9645,\"journal\":{\"name\":\"Casopis lekaru ceskych\",\"volume\":\"162 7-8\",\"pages\":\"294-297\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Casopis lekaru ceskych\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Casopis lekaru ceskych","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

基于神经网络的大型语言模型(LLM)的出现标志着学术写作的重大转变,尤其是在医学科学领域。这些模型,包括 OpenAI 的 GPT-4、谷歌的 Bard 和 Anthropic 的 Claude,通过转换器架构和注意力机制实现了更高效的文本处理。LLM 可以生成与人类书写内容无异的连贯文本。在医学领域,它们有助于实现文献综述、数据提取和假设提出的自动化。然而,科学出版物的质量和完整性以及产生误导性内容的风险会引起道德方面的担忧。本文概述了 LLM 如何改变医学写作、其带来的伦理困境以及检测人工智能生成文本的可能性。最后,文章重点探讨了LLM在学术出版领域的潜在前景及其对医学界的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large language models are changing landscape of academic publications. A positive transformation?

The advent of large language models (LLMs) based on neural networks marks a significant shift in academic writing, particularly in medical sciences. These models, including OpenAI's GPT-4, Google's Bard, and Anthropic's Claude, enable more efficient text processing through transformer architecture and attention mechanisms. LLMs can generate coherent texts that are indistinguishable from human-written content. In medicine, they can contribute to the automation of literature reviews, data extraction, and hypothesis formulation. However, ethical concerns arise regarding the quality and integrity of scientific publications and the risk of generating misleading content. This article provides an overview of how LLMs are changing medical writing, the ethical dilemmas they bring, and the possibilities for detecting AI-generated text. It concludes with a focus on the potential future of LLMs in academic publishing and their impact on the medical community.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Casopis lekaru ceskych
Casopis lekaru ceskych Medicine-Medicine (all)
CiteScore
0.60
自引率
0.00%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信