{"title":"根毛发育过程中的氨基酸生物合成:小型综述。","authors":"Jesús Montiel, Joseph G Dubrovsky","doi":"10.1042/BST20231558","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolic factors are essential for developmental biology of an organism. In plants, roots fulfill important functions, in part due to the development of specific epidermal cells, called hair cells that form root hairs (RHs) responsible for water and mineral uptake. RH development consists in (a) patterning processes involved in formation of hair and non-hair cells developed from trichoblasts and atrichoblasts; (b) RH initiation; and (c) apical (tip) growth of the RH. Here we review how these processes depend on pools of different amino acids and what is known about RH phenotypes of mutants disrupted in amino acid biosynthesis. This analysis shows that some amino acids, particularly aromatic ones, are required for RH apical (tip) growth, and that not much is known about the role of amino acids at earlier stages of RH formation. We also address the role of amino acids in rhizosphere, inhibitory and stimulating effects of amino acids on RH growth, amino acids as N source in plant nutrition, and amino acid transporters and their expression in the RHs. Amino acids form conjugates with auxin, a hormone essential for RH growth, and respective genes are overviewed. Finally, we outline missing links and envision some perspectives in the field.</p>","PeriodicalId":8841,"journal":{"name":"Biochemical Society transactions","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Amino acids biosynthesis in root hair development: a mini-review.\",\"authors\":\"Jesús Montiel, Joseph G Dubrovsky\",\"doi\":\"10.1042/BST20231558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metabolic factors are essential for developmental biology of an organism. In plants, roots fulfill important functions, in part due to the development of specific epidermal cells, called hair cells that form root hairs (RHs) responsible for water and mineral uptake. RH development consists in (a) patterning processes involved in formation of hair and non-hair cells developed from trichoblasts and atrichoblasts; (b) RH initiation; and (c) apical (tip) growth of the RH. Here we review how these processes depend on pools of different amino acids and what is known about RH phenotypes of mutants disrupted in amino acid biosynthesis. This analysis shows that some amino acids, particularly aromatic ones, are required for RH apical (tip) growth, and that not much is known about the role of amino acids at earlier stages of RH formation. We also address the role of amino acids in rhizosphere, inhibitory and stimulating effects of amino acids on RH growth, amino acids as N source in plant nutrition, and amino acid transporters and their expression in the RHs. Amino acids form conjugates with auxin, a hormone essential for RH growth, and respective genes are overviewed. Finally, we outline missing links and envision some perspectives in the field.</p>\",\"PeriodicalId\":8841,\"journal\":{\"name\":\"Biochemical Society transactions\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Society transactions\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1042/BST20231558\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Society transactions","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BST20231558","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Amino acids biosynthesis in root hair development: a mini-review.
Metabolic factors are essential for developmental biology of an organism. In plants, roots fulfill important functions, in part due to the development of specific epidermal cells, called hair cells that form root hairs (RHs) responsible for water and mineral uptake. RH development consists in (a) patterning processes involved in formation of hair and non-hair cells developed from trichoblasts and atrichoblasts; (b) RH initiation; and (c) apical (tip) growth of the RH. Here we review how these processes depend on pools of different amino acids and what is known about RH phenotypes of mutants disrupted in amino acid biosynthesis. This analysis shows that some amino acids, particularly aromatic ones, are required for RH apical (tip) growth, and that not much is known about the role of amino acids at earlier stages of RH formation. We also address the role of amino acids in rhizosphere, inhibitory and stimulating effects of amino acids on RH growth, amino acids as N source in plant nutrition, and amino acid transporters and their expression in the RHs. Amino acids form conjugates with auxin, a hormone essential for RH growth, and respective genes are overviewed. Finally, we outline missing links and envision some perspectives in the field.
期刊介绍:
Biochemical Society Transactions is the reviews journal of the Biochemical Society. Publishing concise reviews written by experts in the field, providing a timely snapshot of the latest developments across all areas of the molecular and cellular biosciences.
Elevating our authors’ ideas and expertise, each review includes a perspectives section where authors offer comment on the latest advances, a glimpse of future challenges and highlighting the importance of associated research areas in far broader contexts.