Obiora A Eneanya, Maryann G Delea, Jorge Cano, Philip Ouakou Tchindebet, Robert L Richards, Yujing Zhao, Abdalla Meftuh, Karmen Unterwegner, Sarah Anne J Guagliardo, Donald R Hopkins, Adam Weiss
{"title":"预测乍得几内亚蠕虫(Dracunculus Medinensis)的环境适应性并确定气候和社会人口相关因素。","authors":"Obiora A Eneanya, Maryann G Delea, Jorge Cano, Philip Ouakou Tchindebet, Robert L Richards, Yujing Zhao, Abdalla Meftuh, Karmen Unterwegner, Sarah Anne J Guagliardo, Donald R Hopkins, Adam Weiss","doi":"10.4269/ajtmh.23-0681","DOIUrl":null,"url":null,"abstract":"<p><p>A comprehensive understanding of the spatial distribution and correlates of infection are key for the planning of disease control programs and assessing the feasibility of elimination and/or eradication. In this work, we used species distribution modeling to predict the environmental suitability of the Guinea worm (Dracunculus medinensis) and identify important climatic and sociodemographic risk factors. Using Guinea worm surveillance data collected by the Chad Guinea Worm Eradication Program (CGWEP) from 2010 to 2022 in combination with remotely sensed climate and sociodemographic correlates of infection within an ensemble machine learning framework, we mapped the environmental suitability of Guinea worm infection in Chad. The same analytical framework was also used to ascertain the contribution and influence of the identified climatic risk factors. Spatial distribution maps showed predominant clustering around the southern regions and along the Chari River. We also identified areas predicted to be environmentally suitable for infection. Of note are districts near the western border with Cameroon and southeastern border with Central African Republic. Key environmental correlates of infection as identified by the model were proximity to permanent rivers and inland lakes, farmlands, land surface temperature, and precipitation. This work provides a comprehensive model of the spatial distribution of Guinea worm infections in Chad 2010-2022 and sheds light on potential environmental correlates of infection. As the CGWEP moves toward elimination, the methods and results in this study will inform surveillance activities and help optimize the allocation of intervention resources.</p>","PeriodicalId":7752,"journal":{"name":"American Journal of Tropical Medicine and Hygiene","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11376124/pdf/","citationCount":"0","resultStr":"{\"title\":\"Predicting the Environmental Suitability and Identifying Climate and Sociodemographic Correlates of Guinea Worm (Dracunculus medinensis) in Chad.\",\"authors\":\"Obiora A Eneanya, Maryann G Delea, Jorge Cano, Philip Ouakou Tchindebet, Robert L Richards, Yujing Zhao, Abdalla Meftuh, Karmen Unterwegner, Sarah Anne J Guagliardo, Donald R Hopkins, Adam Weiss\",\"doi\":\"10.4269/ajtmh.23-0681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A comprehensive understanding of the spatial distribution and correlates of infection are key for the planning of disease control programs and assessing the feasibility of elimination and/or eradication. In this work, we used species distribution modeling to predict the environmental suitability of the Guinea worm (Dracunculus medinensis) and identify important climatic and sociodemographic risk factors. Using Guinea worm surveillance data collected by the Chad Guinea Worm Eradication Program (CGWEP) from 2010 to 2022 in combination with remotely sensed climate and sociodemographic correlates of infection within an ensemble machine learning framework, we mapped the environmental suitability of Guinea worm infection in Chad. The same analytical framework was also used to ascertain the contribution and influence of the identified climatic risk factors. Spatial distribution maps showed predominant clustering around the southern regions and along the Chari River. We also identified areas predicted to be environmentally suitable for infection. Of note are districts near the western border with Cameroon and southeastern border with Central African Republic. Key environmental correlates of infection as identified by the model were proximity to permanent rivers and inland lakes, farmlands, land surface temperature, and precipitation. This work provides a comprehensive model of the spatial distribution of Guinea worm infections in Chad 2010-2022 and sheds light on potential environmental correlates of infection. As the CGWEP moves toward elimination, the methods and results in this study will inform surveillance activities and help optimize the allocation of intervention resources.</p>\",\"PeriodicalId\":7752,\"journal\":{\"name\":\"American Journal of Tropical Medicine and Hygiene\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11376124/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Tropical Medicine and Hygiene\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4269/ajtmh.23-0681\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/3 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q3\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Tropical Medicine and Hygiene","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4269/ajtmh.23-0681","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/3 0:00:00","PubModel":"Print","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Predicting the Environmental Suitability and Identifying Climate and Sociodemographic Correlates of Guinea Worm (Dracunculus medinensis) in Chad.
A comprehensive understanding of the spatial distribution and correlates of infection are key for the planning of disease control programs and assessing the feasibility of elimination and/or eradication. In this work, we used species distribution modeling to predict the environmental suitability of the Guinea worm (Dracunculus medinensis) and identify important climatic and sociodemographic risk factors. Using Guinea worm surveillance data collected by the Chad Guinea Worm Eradication Program (CGWEP) from 2010 to 2022 in combination with remotely sensed climate and sociodemographic correlates of infection within an ensemble machine learning framework, we mapped the environmental suitability of Guinea worm infection in Chad. The same analytical framework was also used to ascertain the contribution and influence of the identified climatic risk factors. Spatial distribution maps showed predominant clustering around the southern regions and along the Chari River. We also identified areas predicted to be environmentally suitable for infection. Of note are districts near the western border with Cameroon and southeastern border with Central African Republic. Key environmental correlates of infection as identified by the model were proximity to permanent rivers and inland lakes, farmlands, land surface temperature, and precipitation. This work provides a comprehensive model of the spatial distribution of Guinea worm infections in Chad 2010-2022 and sheds light on potential environmental correlates of infection. As the CGWEP moves toward elimination, the methods and results in this study will inform surveillance activities and help optimize the allocation of intervention resources.
期刊介绍:
The American Journal of Tropical Medicine and Hygiene, established in 1921, is published monthly by the American Society of Tropical Medicine and Hygiene. It is among the top-ranked tropical medicine journals in the world publishing original scientific articles and the latest science covering new research with an emphasis on population, clinical and laboratory science and the application of technology in the fields of tropical medicine, parasitology, immunology, infectious diseases, epidemiology, basic and molecular biology, virology and international medicine.
The Journal publishes unsolicited peer-reviewed manuscripts, review articles, short reports, images in Clinical Tropical Medicine, case studies, reports on the efficacy of new drugs and methods of treatment, prevention and control methodologies,new testing methods and equipment, book reports and Letters to the Editor. Topics range from applied epidemiology in such relevant areas as AIDS to the molecular biology of vaccine development.
The Journal is of interest to epidemiologists, parasitologists, virologists, clinicians, entomologists and public health officials who are concerned with health issues of the tropics, developing nations and emerging infectious diseases. Major granting institutions including philanthropic and governmental institutions active in the public health field, and medical and scientific libraries throughout the world purchase the Journal.
Two or more supplements to the Journal on topics of special interest are published annually. These supplements represent comprehensive and multidisciplinary discussions of issues of concern to tropical disease specialists and health issues of developing countries