将纳米氧化锆封闭在纳米域中可获得具有大变形的电活性人工肌肉

IF 5.4 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
{"title":"将纳米氧化锆封闭在纳米域中可获得具有大变形的电活性人工肌肉","authors":"","doi":"10.1021/acs.biomac.4c00431","DOIUrl":null,"url":null,"abstract":"<div><p>Dielectric elastomers generate muscle-like electroactive actuation, which is applicable in soft machines, medical devices, etc. However, the actuation strain and energy density of most dielectric elastomers, in the absence of prestretch, have long been limited to ∼20% and ∼10 kJ m<sup>–3</sup>, respectively. Here, we report a dielectric elastomer with ZrO<sub>2</sub> nanoparticles confined in nanodomains, which achieves an actuation strain &gt;100% and an energy density of ∼150 kJ m<sup>–3</sup> without prestretch. We decorate the surface of each nanoparticle with a layer of a diblock oligomer, poly­(acrylic acid-<em>b</em>-styrene). The surface-decorated nanoparticles coassemble with a triblock copolymer elastomer, poly­(styrene-<em>b</em>-(2-ethylhexyl acrylate)-<em>b</em>-styrene) during cosolvent casting. Consequently, the nanoparticles are confined in the polystyrene nanodomains, which results in a dielectric elastomer nanocomposite with a low modulus, high breakdown strength, and intense strain-hardening behavior. During the actuation, the nanocomposite avoids the snap-through instability that most elastomers would suffer and achieves a superior actuation performance.</p></div><div><p><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (97KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></p></div>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":"25 8","pages":"Pages 5019-5027"},"PeriodicalIF":5.4000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Confining Nano-ZrO2 in Nanodomains Leads to Electroactive Artificial Muscle with Large Deformation\",\"authors\":\"\",\"doi\":\"10.1021/acs.biomac.4c00431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Dielectric elastomers generate muscle-like electroactive actuation, which is applicable in soft machines, medical devices, etc. However, the actuation strain and energy density of most dielectric elastomers, in the absence of prestretch, have long been limited to ∼20% and ∼10 kJ m<sup>–3</sup>, respectively. Here, we report a dielectric elastomer with ZrO<sub>2</sub> nanoparticles confined in nanodomains, which achieves an actuation strain &gt;100% and an energy density of ∼150 kJ m<sup>–3</sup> without prestretch. We decorate the surface of each nanoparticle with a layer of a diblock oligomer, poly­(acrylic acid-<em>b</em>-styrene). The surface-decorated nanoparticles coassemble with a triblock copolymer elastomer, poly­(styrene-<em>b</em>-(2-ethylhexyl acrylate)-<em>b</em>-styrene) during cosolvent casting. Consequently, the nanoparticles are confined in the polystyrene nanodomains, which results in a dielectric elastomer nanocomposite with a low modulus, high breakdown strength, and intense strain-hardening behavior. During the actuation, the nanocomposite avoids the snap-through instability that most elastomers would suffer and achieves a superior actuation performance.</p></div><div><p><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (97KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></p></div>\",\"PeriodicalId\":30,\"journal\":{\"name\":\"Biomacromolecules\",\"volume\":\"25 8\",\"pages\":\"Pages 5019-5027\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomacromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1525779724003866\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1525779724003866","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

介电弹性体可产生类似肌肉的电活性驱动,适用于软机器、医疗设备等。然而,长期以来,在没有预拉伸的情况下,大多数介电弹性体的致动应变和能量密度分别被限制在 20% 和 10 kJ m-3 以下。在这里,我们报告了一种介电弹性体,其中的 ZrO2 纳米粒子被限制在纳米域中,无需预拉伸即可达到大于 100% 的致动应变和 ∼150 kJ m-3 的能量密度。我们在每个纳米粒子的表面装饰了一层二嵌低聚物聚(丙烯酸-苯乙烯)。在共溶剂浇注过程中,表面装饰的纳米颗粒与三嵌段共聚弹性体聚(苯乙烯-b-(2-乙基己基丙烯酸酯)-b-苯乙烯)共同组装。因此,纳米粒子被限制在聚苯乙烯纳米域中,形成了一种具有低模量、高击穿强度和强应变硬化行为的介电弹性体纳米复合材料。在致动过程中,纳米复合材料避免了大多数弹性体会出现的卡穿不稳定性,实现了卓越的致动性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Confining Nano-ZrO2 in Nanodomains Leads to Electroactive Artificial Muscle with Large Deformation

Confining Nano-ZrO2 in Nanodomains Leads to Electroactive Artificial Muscle with Large Deformation

Dielectric elastomers generate muscle-like electroactive actuation, which is applicable in soft machines, medical devices, etc. However, the actuation strain and energy density of most dielectric elastomers, in the absence of prestretch, have long been limited to ∼20% and ∼10 kJ m–3, respectively. Here, we report a dielectric elastomer with ZrO2 nanoparticles confined in nanodomains, which achieves an actuation strain >100% and an energy density of ∼150 kJ m–3 without prestretch. We decorate the surface of each nanoparticle with a layer of a diblock oligomer, poly­(acrylic acid-b-styrene). The surface-decorated nanoparticles coassemble with a triblock copolymer elastomer, poly­(styrene-b-(2-ethylhexyl acrylate)-b-styrene) during cosolvent casting. Consequently, the nanoparticles are confined in the polystyrene nanodomains, which results in a dielectric elastomer nanocomposite with a low modulus, high breakdown strength, and intense strain-hardening behavior. During the actuation, the nanocomposite avoids the snap-through instability that most elastomers would suffer and achieves a superior actuation performance.

  1. Download: Download high-res image (97KB)
  2. Download: Download full-size image

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomacromolecules
Biomacromolecules 化学-高分子科学
CiteScore
10.60
自引率
4.80%
发文量
417
审稿时长
1.6 months
期刊介绍: Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine. Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信