计算机生成全息技术中逆向问题求解的非凸优化技术

IF 20.6 Q1 OPTICS
Xiaomeng Sui, Zehao He, Daping Chu, Liangcai Cao
{"title":"计算机生成全息技术中逆向问题求解的非凸优化技术","authors":"Xiaomeng Sui, Zehao He, Daping Chu, Liangcai Cao","doi":"10.1038/s41377-024-01446-w","DOIUrl":null,"url":null,"abstract":"<p>Computer-generated holography is a promising technique that modulates user-defined wavefronts with digital holograms. Computing appropriate holograms with faithful reconstructions is not only a problem closely related to the fundamental basis of holography but also a long-standing challenge for researchers in general fields of optics. Finding the exact solution of a desired hologram to reconstruct an accurate target object constitutes an ill-posed inverse problem. The general practice of single-diffraction computation for synthesizing holograms can only provide an approximate answer, which is subject to limitations in numerical implementation. Various non-convex optimization algorithms are thus designed to seek an optimal solution by introducing different constraints, frameworks, and initializations. Herein, we overview the optimization algorithms applied to computer-generated holography, incorporating principles of hologram synthesis based on alternative projections and gradient descent methods. This is aimed to provide an underlying basis for optimized hologram generation, as well as insights into the cutting-edge developments of this rapidly evolving field for potential applications in virtual reality, augmented reality, head-up display, data encryption, laser fabrication, and metasurface design.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":null,"pages":null},"PeriodicalIF":20.6000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-convex optimization for inverse problem solving in computer-generated holography\",\"authors\":\"Xiaomeng Sui, Zehao He, Daping Chu, Liangcai Cao\",\"doi\":\"10.1038/s41377-024-01446-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Computer-generated holography is a promising technique that modulates user-defined wavefronts with digital holograms. Computing appropriate holograms with faithful reconstructions is not only a problem closely related to the fundamental basis of holography but also a long-standing challenge for researchers in general fields of optics. Finding the exact solution of a desired hologram to reconstruct an accurate target object constitutes an ill-posed inverse problem. The general practice of single-diffraction computation for synthesizing holograms can only provide an approximate answer, which is subject to limitations in numerical implementation. Various non-convex optimization algorithms are thus designed to seek an optimal solution by introducing different constraints, frameworks, and initializations. Herein, we overview the optimization algorithms applied to computer-generated holography, incorporating principles of hologram synthesis based on alternative projections and gradient descent methods. This is aimed to provide an underlying basis for optimized hologram generation, as well as insights into the cutting-edge developments of this rapidly evolving field for potential applications in virtual reality, augmented reality, head-up display, data encryption, laser fabrication, and metasurface design.</p>\",\"PeriodicalId\":18069,\"journal\":{\"name\":\"Light-Science & Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":20.6000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Light-Science & Applications\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1038/s41377-024-01446-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01446-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

计算机生成全息技术是一种前景广阔的技术,它通过数字全息图调制用户定义的波面。计算具有忠实重构的适当全息图不仅是一个与全息技术的基本原理密切相关的问题,也是普通光学领域研究人员长期面临的挑战。找到所需的全息图的精确解来重建精确的目标物体是一个难以解决的逆问题。合成全息图的单衍射计算的一般做法只能提供近似答案,这在数值实现方面受到限制。因此,人们设计了各种非凸优化算法,通过引入不同的约束、框架和初始化来寻求最优解。在此,我们将概述应用于计算机生成全息图的优化算法,并结合基于替代投影和梯度下降方法的全息图合成原理。这样做的目的是为优化全息图生成提供一个基础,并深入了解这一快速发展领域的前沿发展,以便将其潜在应用于虚拟现实、增强现实、平视显示器、数据加密、激光制造和元表面设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Non-convex optimization for inverse problem solving in computer-generated holography

Non-convex optimization for inverse problem solving in computer-generated holography

Computer-generated holography is a promising technique that modulates user-defined wavefronts with digital holograms. Computing appropriate holograms with faithful reconstructions is not only a problem closely related to the fundamental basis of holography but also a long-standing challenge for researchers in general fields of optics. Finding the exact solution of a desired hologram to reconstruct an accurate target object constitutes an ill-posed inverse problem. The general practice of single-diffraction computation for synthesizing holograms can only provide an approximate answer, which is subject to limitations in numerical implementation. Various non-convex optimization algorithms are thus designed to seek an optimal solution by introducing different constraints, frameworks, and initializations. Herein, we overview the optimization algorithms applied to computer-generated holography, incorporating principles of hologram synthesis based on alternative projections and gradient descent methods. This is aimed to provide an underlying basis for optimized hologram generation, as well as insights into the cutting-edge developments of this rapidly evolving field for potential applications in virtual reality, augmented reality, head-up display, data encryption, laser fabrication, and metasurface design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信