{"title":"明亮的太赫兹电子枪带来新机遇","authors":"Gyula Polónyi, János Hebling","doi":"10.1038/s41566-024-01469-0","DOIUrl":null,"url":null,"abstract":"A new design of electron gun that uses terahertz waves to accelerate electrons in a high field gradient brings a tabletop answer to the generation of ultrashort electron bunches.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 7","pages":"646-647"},"PeriodicalIF":32.3000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bright terahertz electron gun opens new opportunities\",\"authors\":\"Gyula Polónyi, János Hebling\",\"doi\":\"10.1038/s41566-024-01469-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new design of electron gun that uses terahertz waves to accelerate electrons in a high field gradient brings a tabletop answer to the generation of ultrashort electron bunches.\",\"PeriodicalId\":18926,\"journal\":{\"name\":\"Nature Photonics\",\"volume\":\"18 7\",\"pages\":\"646-647\"},\"PeriodicalIF\":32.3000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s41566-024-01469-0\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41566-024-01469-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Bright terahertz electron gun opens new opportunities
A new design of electron gun that uses terahertz waves to accelerate electrons in a high field gradient brings a tabletop answer to the generation of ultrashort electron bunches.
期刊介绍:
Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection.
The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays.
In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.