Shams Forruque Ahmed, Fatema Mehejabin, Ashfaque Ahmed Chowdhury, Fares Almomani, Nadeem A. Khan, Irfan Anjum Badruddin, Sarfaraz Kamangar
{"title":"以废物为原料生产生物炭:机制、影响因素、经济、利用、挑战和前景","authors":"Shams Forruque Ahmed, Fatema Mehejabin, Ashfaque Ahmed Chowdhury, Fares Almomani, Nadeem A. Khan, Irfan Anjum Badruddin, Sarfaraz Kamangar","doi":"10.1111/gcbb.13175","DOIUrl":null,"url":null,"abstract":"<p>Biochar possesses unique characteristics, including a substantial surface area, a high carbon content, sufficient capacity for cation exchange, and a robust structure. However, biochar contains hazardous pollutants like volatile organic compounds that harm soil properties and functionality. Although several studies on biochar production from various feedstocks have been undertaken in recent years, several issues about feedstock preparation, economic feasibility, influencing factors, and the proper utilization of biochar production processes need to be addressed. This paper thus addresses these issues by providing potential solutions identified through a comprehensive review. Slow pyrolysis of lignocellulosic biomass and Acacia nilotica yields biochar from 20 to 52 wt% at various temperatures and residence times. Biochar yield varies from 29 to 48.3 wt% when waste tires and corn stalks are rapidly pyrolyzed at higher temperatures and for shorter periods. Torrefaction of algal biomass at moderate temperatures with different residence times can result in a substantial yield of 50–60 wt%. However, the variability and heterogeneity of waste feedstocks pose potential challenges affecting biochar's quality and properties. Given its widespread use in carbon sequestration, soil remediation, wastewater purification, and organic waste composting, the mechanisms of biochar production in environmental usage need to be investigated.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"16 8","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.13175","citationCount":"0","resultStr":"{\"title\":\"Biochar produced from waste-based feedstocks: Mechanisms, affecting factors, economy, utilization, challenges, and prospects\",\"authors\":\"Shams Forruque Ahmed, Fatema Mehejabin, Ashfaque Ahmed Chowdhury, Fares Almomani, Nadeem A. Khan, Irfan Anjum Badruddin, Sarfaraz Kamangar\",\"doi\":\"10.1111/gcbb.13175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Biochar possesses unique characteristics, including a substantial surface area, a high carbon content, sufficient capacity for cation exchange, and a robust structure. However, biochar contains hazardous pollutants like volatile organic compounds that harm soil properties and functionality. Although several studies on biochar production from various feedstocks have been undertaken in recent years, several issues about feedstock preparation, economic feasibility, influencing factors, and the proper utilization of biochar production processes need to be addressed. This paper thus addresses these issues by providing potential solutions identified through a comprehensive review. Slow pyrolysis of lignocellulosic biomass and Acacia nilotica yields biochar from 20 to 52 wt% at various temperatures and residence times. Biochar yield varies from 29 to 48.3 wt% when waste tires and corn stalks are rapidly pyrolyzed at higher temperatures and for shorter periods. Torrefaction of algal biomass at moderate temperatures with different residence times can result in a substantial yield of 50–60 wt%. However, the variability and heterogeneity of waste feedstocks pose potential challenges affecting biochar's quality and properties. Given its widespread use in carbon sequestration, soil remediation, wastewater purification, and organic waste composting, the mechanisms of biochar production in environmental usage need to be investigated.</p>\",\"PeriodicalId\":55126,\"journal\":{\"name\":\"Global Change Biology Bioenergy\",\"volume\":\"16 8\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.13175\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Change Biology Bioenergy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.13175\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.13175","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Biochar produced from waste-based feedstocks: Mechanisms, affecting factors, economy, utilization, challenges, and prospects
Biochar possesses unique characteristics, including a substantial surface area, a high carbon content, sufficient capacity for cation exchange, and a robust structure. However, biochar contains hazardous pollutants like volatile organic compounds that harm soil properties and functionality. Although several studies on biochar production from various feedstocks have been undertaken in recent years, several issues about feedstock preparation, economic feasibility, influencing factors, and the proper utilization of biochar production processes need to be addressed. This paper thus addresses these issues by providing potential solutions identified through a comprehensive review. Slow pyrolysis of lignocellulosic biomass and Acacia nilotica yields biochar from 20 to 52 wt% at various temperatures and residence times. Biochar yield varies from 29 to 48.3 wt% when waste tires and corn stalks are rapidly pyrolyzed at higher temperatures and for shorter periods. Torrefaction of algal biomass at moderate temperatures with different residence times can result in a substantial yield of 50–60 wt%. However, the variability and heterogeneity of waste feedstocks pose potential challenges affecting biochar's quality and properties. Given its widespread use in carbon sequestration, soil remediation, wastewater purification, and organic waste composting, the mechanisms of biochar production in environmental usage need to be investigated.
期刊介绍:
GCB Bioenergy is an international journal publishing original research papers, review articles and commentaries that promote understanding of the interface between biological and environmental sciences and the production of fuels directly from plants, algae and waste. The scope of the journal extends to areas outside of biology to policy forum, socioeconomic analyses, technoeconomic analyses and systems analysis. Papers do not need a global change component for consideration for publication, it is viewed as implicit that most bioenergy will be beneficial in avoiding at least a part of the fossil fuel energy that would otherwise be used.
Key areas covered by the journal:
Bioenergy feedstock and bio-oil production: energy crops and algae their management,, genomics, genetic improvements, planting, harvesting, storage, transportation, integrated logistics, production modeling, composition and its modification, pests, diseases and weeds of feedstocks. Manuscripts concerning alternative energy based on biological mimicry are also encouraged (e.g. artificial photosynthesis).
Biological Residues/Co-products: from agricultural production, forestry and plantations (stover, sugar, bio-plastics, etc.), algae processing industries, and municipal sources (MSW).
Bioenergy and the Environment: ecosystem services, carbon mitigation, land use change, life cycle assessment, energy and greenhouse gas balances, water use, water quality, assessment of sustainability, and biodiversity issues.
Bioenergy Socioeconomics: examining the economic viability or social acceptability of crops, crops systems and their processing, including genetically modified organisms [GMOs], health impacts of bioenergy systems.
Bioenergy Policy: legislative developments affecting biofuels and bioenergy.
Bioenergy Systems Analysis: examining biological developments in a whole systems context.