{"title":"利用物理增强随机森林模型和静止卫星进行华南对流起始预报","authors":"Chunlei Yang, Huiling Yuan, Feng Zhang, Meng Xie, Yan Wang, Geng-Ming Jiang","doi":"10.1029/2024EA003571","DOIUrl":null,"url":null,"abstract":"<p>Convective initiation (CI) nowcasting in subtropical regions often faces challenges, such as complex physical processes and imbalanced samples of CI events, resulting in a high false alarm ratio (FAR). In this paper, we propose a Storm Warning System with Physics-Augmentation (SWASP) based on the random forest algorithm and cloud physical conditions, using Himawari-8 Advanced Himawari Imager data from April to September 2019 in South China. The cloud physical conditions (e.g., cloud-top cooling rates) were investigated to establish regional thresholds for convection occurrence. Ancillary information, including elevation, satellite zenith angle, and latitude, was also incorporated into the SWASP model. Compared to conventional methods, the SWASP model exhibits an improved probability of detection by 0.11 and 0.08 and a decreased FAR by 0.38 and 0.44 for daytime and nighttime forecasts. Moreover, the SWASP model enables the detection of local convective storm systems about 30 min to 1 hr ahead of radar detection in typical convective storm cases. This study contributes to further advancements of the SWASP model by incorporating physical conditions and emphasizes the potential application of geostationary satellites in convective early warnings.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA003571","citationCount":"0","resultStr":"{\"title\":\"Convective Initiation Nowcasting in South China Using Physics-Augmented Random Forest Models and Geostationary Satellites\",\"authors\":\"Chunlei Yang, Huiling Yuan, Feng Zhang, Meng Xie, Yan Wang, Geng-Ming Jiang\",\"doi\":\"10.1029/2024EA003571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Convective initiation (CI) nowcasting in subtropical regions often faces challenges, such as complex physical processes and imbalanced samples of CI events, resulting in a high false alarm ratio (FAR). In this paper, we propose a Storm Warning System with Physics-Augmentation (SWASP) based on the random forest algorithm and cloud physical conditions, using Himawari-8 Advanced Himawari Imager data from April to September 2019 in South China. The cloud physical conditions (e.g., cloud-top cooling rates) were investigated to establish regional thresholds for convection occurrence. Ancillary information, including elevation, satellite zenith angle, and latitude, was also incorporated into the SWASP model. Compared to conventional methods, the SWASP model exhibits an improved probability of detection by 0.11 and 0.08 and a decreased FAR by 0.38 and 0.44 for daytime and nighttime forecasts. Moreover, the SWASP model enables the detection of local convective storm systems about 30 min to 1 hr ahead of radar detection in typical convective storm cases. This study contributes to further advancements of the SWASP model by incorporating physical conditions and emphasizes the potential application of geostationary satellites in convective early warnings.</p>\",\"PeriodicalId\":54286,\"journal\":{\"name\":\"Earth and Space Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA003571\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth and Space Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024EA003571\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Space Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EA003571","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Convective Initiation Nowcasting in South China Using Physics-Augmented Random Forest Models and Geostationary Satellites
Convective initiation (CI) nowcasting in subtropical regions often faces challenges, such as complex physical processes and imbalanced samples of CI events, resulting in a high false alarm ratio (FAR). In this paper, we propose a Storm Warning System with Physics-Augmentation (SWASP) based on the random forest algorithm and cloud physical conditions, using Himawari-8 Advanced Himawari Imager data from April to September 2019 in South China. The cloud physical conditions (e.g., cloud-top cooling rates) were investigated to establish regional thresholds for convection occurrence. Ancillary information, including elevation, satellite zenith angle, and latitude, was also incorporated into the SWASP model. Compared to conventional methods, the SWASP model exhibits an improved probability of detection by 0.11 and 0.08 and a decreased FAR by 0.38 and 0.44 for daytime and nighttime forecasts. Moreover, the SWASP model enables the detection of local convective storm systems about 30 min to 1 hr ahead of radar detection in typical convective storm cases. This study contributes to further advancements of the SWASP model by incorporating physical conditions and emphasizes the potential application of geostationary satellites in convective early warnings.
期刊介绍:
Marking AGU’s second new open access journal in the last 12 months, Earth and Space Science is the only journal that reflects the expansive range of science represented by AGU’s 62,000 members, including all of the Earth, planetary, and space sciences, and related fields in environmental science, geoengineering, space engineering, and biogeochemistry.