薰衣草萜烯代谢工程

IF 2.5 Q2 MULTIDISCIPLINARY SCIENCES
Ojo Michael Oseni, Reza Sajaditabar, Soheil S. Mahmoud
{"title":"薰衣草萜烯代谢工程","authors":"Ojo Michael Oseni,&nbsp;Reza Sajaditabar,&nbsp;Soheil S. Mahmoud","doi":"10.1186/s43088-024-00524-7","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Several members of the Lamiaceae family of plants produce large amounts of essential oil [EO] that find extensive applications in the food, cosmetics, personal hygiene, and alternative medicine industries. There is interest in enhancing EO metabolism in these plants.</p><h3>Main body</h3><p>Lavender produces a valuable EO that is highly enriched in monoterpenes, the C<sub>10</sub> class of the isoprenoids or terpenoids. In recent years, substantial effort has been made by researchers to study terpene metabolism and enhance lavender EO through plant biotechnology. This paper reviews recent advances related to the cloning of lavender monoterpene biosynthetic genes and metabolic engineering attempts aimed at improving the production of lavender monoterpenes in plants and microbes.</p><h3>Conclusion</h3><p>Metabolic engineering has led to the improvement of EO quality and yield in several plants, including lavender. Furthermore, several biologically active EO constituents have been produced in microorganisms.</p></div>","PeriodicalId":481,"journal":{"name":"Beni-Suef University Journal of Basic and Applied Sciences","volume":"13 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bjbas.springeropen.com/counter/pdf/10.1186/s43088-024-00524-7","citationCount":"0","resultStr":"{\"title\":\"Metabolic engineering of terpene metabolism in lavender\",\"authors\":\"Ojo Michael Oseni,&nbsp;Reza Sajaditabar,&nbsp;Soheil S. Mahmoud\",\"doi\":\"10.1186/s43088-024-00524-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Several members of the Lamiaceae family of plants produce large amounts of essential oil [EO] that find extensive applications in the food, cosmetics, personal hygiene, and alternative medicine industries. There is interest in enhancing EO metabolism in these plants.</p><h3>Main body</h3><p>Lavender produces a valuable EO that is highly enriched in monoterpenes, the C<sub>10</sub> class of the isoprenoids or terpenoids. In recent years, substantial effort has been made by researchers to study terpene metabolism and enhance lavender EO through plant biotechnology. This paper reviews recent advances related to the cloning of lavender monoterpene biosynthetic genes and metabolic engineering attempts aimed at improving the production of lavender monoterpenes in plants and microbes.</p><h3>Conclusion</h3><p>Metabolic engineering has led to the improvement of EO quality and yield in several plants, including lavender. Furthermore, several biologically active EO constituents have been produced in microorganisms.</p></div>\",\"PeriodicalId\":481,\"journal\":{\"name\":\"Beni-Suef University Journal of Basic and Applied Sciences\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://bjbas.springeropen.com/counter/pdf/10.1186/s43088-024-00524-7\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Beni-Suef University Journal of Basic and Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s43088-024-00524-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beni-Suef University Journal of Basic and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s43088-024-00524-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

背景薰衣草科(Lamiaceae)植物中的一些成员能产生大量的精油(EO),这些精油在食品、化妆品、个人卫生和替代医药行业中有着广泛的应用。正文薰衣草生产一种珍贵的精油,这种精油富含单萜,属于异戊烯或萜类化合物中的 C10 类。近年来,研究人员在研究萜烯代谢和通过植物生物技术增强薰衣草环氧乙烷方面做出了巨大努力。本文回顾了克隆薰衣草单萜生物合成基因的最新进展,以及旨在提高植物和微生物生产薰衣草单萜的代谢工程尝试。此外,微生物中也生产出了多种具有生物活性的环氧乙烷成分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metabolic engineering of terpene metabolism in lavender

Background

Several members of the Lamiaceae family of plants produce large amounts of essential oil [EO] that find extensive applications in the food, cosmetics, personal hygiene, and alternative medicine industries. There is interest in enhancing EO metabolism in these plants.

Main body

Lavender produces a valuable EO that is highly enriched in monoterpenes, the C10 class of the isoprenoids or terpenoids. In recent years, substantial effort has been made by researchers to study terpene metabolism and enhance lavender EO through plant biotechnology. This paper reviews recent advances related to the cloning of lavender monoterpene biosynthetic genes and metabolic engineering attempts aimed at improving the production of lavender monoterpenes in plants and microbes.

Conclusion

Metabolic engineering has led to the improvement of EO quality and yield in several plants, including lavender. Furthermore, several biologically active EO constituents have been produced in microorganisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
期刊介绍: Beni-Suef University Journal of Basic and Applied Sciences (BJBAS) is a peer-reviewed, open-access journal. This journal welcomes submissions of original research, literature reviews, and editorials in its respected fields of fundamental science, applied science (with a particular focus on the fields of applied nanotechnology and biotechnology), medical sciences, pharmaceutical sciences, and engineering. The multidisciplinary aspects of the journal encourage global collaboration between researchers in multiple fields and provide cross-disciplinary dissemination of findings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信