E N Panting, J H Weight, J A Sartori, D A Coall, J T Smith
{"title":"胎盘kisspeptin在滋养层侵入和迁移中的作用:Kiss1r基因敲除小鼠、BeWo细胞系和人类足月胎盘的评估。","authors":"E N Panting, J H Weight, J A Sartori, D A Coall, J T Smith","doi":"10.1071/RD23230","DOIUrl":null,"url":null,"abstract":"<p><p>Context There is mounting evidence implicating kisspeptin signalling in placental development and function. Aims This study aimed to elucidate kisspeptin's role in trophoblast invasion and migration using three experimental models. Methods First, we examined the mouse fetus and placenta in a kisspeptin receptor (Kiss1r) knockout (KO) model. Fetal/placental weights and gene expression (quantitative polymerase chain reaction) were assessed. Second, we determined kisspeptin effects on a human trophoblast (BeWo) cell line in vitro . Third, we examined KISS1 and KISS1R gene expression in human placenta from term and pre-term pregnancies. Key results No difference was found in fetal or placental weight between Kiss1r KO and wildtype mice. However, expression of the trophoblast invasion marker, Mmp2 mRNA, was greater in the placental labyrinth zone of Kiss1r KO mice. BeWo cell models of villus cytotrophoblast and syncytiotrophoblast cells exhibited kisspeptin protein expression, with greater expression in syncytiotrophoblast, consistent with KISS1 mRNA. Kisspeptin treatment inhibited the migratory potential of cytotrophoblast-like cells. Finally, while no difference was seen in KISS1 and KISS1R mRNA between term and pre-term placentas, we saw a difference in the relative expression of each gene pre-term. We also observed a positive correlation between KISS1 expression and maternal body mass index. Conclusions Our results indicate that kisspeptin may inhibit trophoblast invasion. Implications Further investigation is required to clarify specific regulatory mechanisms.</p>","PeriodicalId":516117,"journal":{"name":"Reproduction, fertility, and development","volume":"36 ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of placental kisspeptin in trophoblast invasion and migration: an assessment in <i>Kiss1r</i> knockout mice, BeWo cell lines and human term placenta.\",\"authors\":\"E N Panting, J H Weight, J A Sartori, D A Coall, J T Smith\",\"doi\":\"10.1071/RD23230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Context There is mounting evidence implicating kisspeptin signalling in placental development and function. Aims This study aimed to elucidate kisspeptin's role in trophoblast invasion and migration using three experimental models. Methods First, we examined the mouse fetus and placenta in a kisspeptin receptor (Kiss1r) knockout (KO) model. Fetal/placental weights and gene expression (quantitative polymerase chain reaction) were assessed. Second, we determined kisspeptin effects on a human trophoblast (BeWo) cell line in vitro . Third, we examined KISS1 and KISS1R gene expression in human placenta from term and pre-term pregnancies. Key results No difference was found in fetal or placental weight between Kiss1r KO and wildtype mice. However, expression of the trophoblast invasion marker, Mmp2 mRNA, was greater in the placental labyrinth zone of Kiss1r KO mice. BeWo cell models of villus cytotrophoblast and syncytiotrophoblast cells exhibited kisspeptin protein expression, with greater expression in syncytiotrophoblast, consistent with KISS1 mRNA. Kisspeptin treatment inhibited the migratory potential of cytotrophoblast-like cells. Finally, while no difference was seen in KISS1 and KISS1R mRNA between term and pre-term placentas, we saw a difference in the relative expression of each gene pre-term. We also observed a positive correlation between KISS1 expression and maternal body mass index. Conclusions Our results indicate that kisspeptin may inhibit trophoblast invasion. Implications Further investigation is required to clarify specific regulatory mechanisms.</p>\",\"PeriodicalId\":516117,\"journal\":{\"name\":\"Reproduction, fertility, and development\",\"volume\":\"36 \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reproduction, fertility, and development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1071/RD23230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproduction, fertility, and development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1071/RD23230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The role of placental kisspeptin in trophoblast invasion and migration: an assessment in Kiss1r knockout mice, BeWo cell lines and human term placenta.
Context There is mounting evidence implicating kisspeptin signalling in placental development and function. Aims This study aimed to elucidate kisspeptin's role in trophoblast invasion and migration using three experimental models. Methods First, we examined the mouse fetus and placenta in a kisspeptin receptor (Kiss1r) knockout (KO) model. Fetal/placental weights and gene expression (quantitative polymerase chain reaction) were assessed. Second, we determined kisspeptin effects on a human trophoblast (BeWo) cell line in vitro . Third, we examined KISS1 and KISS1R gene expression in human placenta from term and pre-term pregnancies. Key results No difference was found in fetal or placental weight between Kiss1r KO and wildtype mice. However, expression of the trophoblast invasion marker, Mmp2 mRNA, was greater in the placental labyrinth zone of Kiss1r KO mice. BeWo cell models of villus cytotrophoblast and syncytiotrophoblast cells exhibited kisspeptin protein expression, with greater expression in syncytiotrophoblast, consistent with KISS1 mRNA. Kisspeptin treatment inhibited the migratory potential of cytotrophoblast-like cells. Finally, while no difference was seen in KISS1 and KISS1R mRNA between term and pre-term placentas, we saw a difference in the relative expression of each gene pre-term. We also observed a positive correlation between KISS1 expression and maternal body mass index. Conclusions Our results indicate that kisspeptin may inhibit trophoblast invasion. Implications Further investigation is required to clarify specific regulatory mechanisms.