{"title":"MASnI3 锡基卤化物包晶的载流子相变迁移机制的第一性原理研究。","authors":"Mingming Li, Jiajia Fei, Xiaojiao Zhang, Jialin Li, Chuanjia Tong, Mengqiu Long","doi":"10.1088/1361-648X/ad604e","DOIUrl":null,"url":null,"abstract":"<p><p>Organic-inorganic hybrid perovskites have attracted tremendous attentions owing to their excellent properties as next-generation photovoltaic devices. With soft covalent framework, organic-inorganic hybrid perovskites exhibit different phases at different temperatures. The band-edge features of perovskites are mainly contributed by inorganic framework, which means the structural differences between these phases would lead to complex carrier transport. We investigated the carrier transport of Sn-based organic-inorganic hybrid perovskite CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>(MASnI<sub>3</sub>), considering acoustic deformation potential scattering, ionized impurity scattering, and polar optical phonon scattering. It is found that the electron mobility of each phase of MASnI<sub>3</sub>is strongly correlated with the Sn-I-Sn bond angle and there is in-plane/out-of-plane anisotropy. The projected crystal orbital Hamilton population analysis suggested that the tilt and rotation of the [SnI<sub>6</sub>]<sup>4-</sup>octahedron influence the Sn(<i>p</i>)-I(<i>p</i>) orbital electron coupling and the electron transport, leading to different band-edge features in multiple phases. The carrier mobility with respect to temperature was further calculated for each phase of MASnI<sub>3</sub>in respective temperature intervals, showing lower carrier mobility in high temperature. Comparing the contribution of different scattering mechanisms, it was found that the dominant scattering mechanism is polar optical phonon scattering, while multiple scattering mechanisms compete in individual cases.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First-principles study of phase-dependent carrier transport mechanism for MASnI<sub>3</sub>Sn-based halide perovskite.\",\"authors\":\"Mingming Li, Jiajia Fei, Xiaojiao Zhang, Jialin Li, Chuanjia Tong, Mengqiu Long\",\"doi\":\"10.1088/1361-648X/ad604e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Organic-inorganic hybrid perovskites have attracted tremendous attentions owing to their excellent properties as next-generation photovoltaic devices. With soft covalent framework, organic-inorganic hybrid perovskites exhibit different phases at different temperatures. The band-edge features of perovskites are mainly contributed by inorganic framework, which means the structural differences between these phases would lead to complex carrier transport. We investigated the carrier transport of Sn-based organic-inorganic hybrid perovskite CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>(MASnI<sub>3</sub>), considering acoustic deformation potential scattering, ionized impurity scattering, and polar optical phonon scattering. It is found that the electron mobility of each phase of MASnI<sub>3</sub>is strongly correlated with the Sn-I-Sn bond angle and there is in-plane/out-of-plane anisotropy. The projected crystal orbital Hamilton population analysis suggested that the tilt and rotation of the [SnI<sub>6</sub>]<sup>4-</sup>octahedron influence the Sn(<i>p</i>)-I(<i>p</i>) orbital electron coupling and the electron transport, leading to different band-edge features in multiple phases. The carrier mobility with respect to temperature was further calculated for each phase of MASnI<sub>3</sub>in respective temperature intervals, showing lower carrier mobility in high temperature. Comparing the contribution of different scattering mechanisms, it was found that the dominant scattering mechanism is polar optical phonon scattering, while multiple scattering mechanisms compete in individual cases.</p>\",\"PeriodicalId\":16776,\"journal\":{\"name\":\"Journal of Physics: Condensed Matter\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-648X/ad604e\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad604e","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
First-principles study of phase-dependent carrier transport mechanism for MASnI3Sn-based halide perovskite.
Organic-inorganic hybrid perovskites have attracted tremendous attentions owing to their excellent properties as next-generation photovoltaic devices. With soft covalent framework, organic-inorganic hybrid perovskites exhibit different phases at different temperatures. The band-edge features of perovskites are mainly contributed by inorganic framework, which means the structural differences between these phases would lead to complex carrier transport. We investigated the carrier transport of Sn-based organic-inorganic hybrid perovskite CH3NH3SnI3(MASnI3), considering acoustic deformation potential scattering, ionized impurity scattering, and polar optical phonon scattering. It is found that the electron mobility of each phase of MASnI3is strongly correlated with the Sn-I-Sn bond angle and there is in-plane/out-of-plane anisotropy. The projected crystal orbital Hamilton population analysis suggested that the tilt and rotation of the [SnI6]4-octahedron influence the Sn(p)-I(p) orbital electron coupling and the electron transport, leading to different band-edge features in multiple phases. The carrier mobility with respect to temperature was further calculated for each phase of MASnI3in respective temperature intervals, showing lower carrier mobility in high temperature. Comparing the contribution of different scattering mechanisms, it was found that the dominant scattering mechanism is polar optical phonon scattering, while multiple scattering mechanisms compete in individual cases.
期刊介绍:
Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.