Aliya Baidourela, Sisi Cheng, Ümüt Halik, Qian Sun, Kahaer Zhayimu, Cuifang Zhang, Kaixu Cui, Li Liu, Guili Sun, Yeerjiang Baiketuerhan, Weixia Wang
{"title":"中国西北干旱地区城市灰尘、土壤和植物中潜在微量元素的生物利用率。","authors":"Aliya Baidourela, Sisi Cheng, Ümüt Halik, Qian Sun, Kahaer Zhayimu, Cuifang Zhang, Kaixu Cui, Li Liu, Guili Sun, Yeerjiang Baiketuerhan, Weixia Wang","doi":"10.1080/15226514.2024.2371916","DOIUrl":null,"url":null,"abstract":"<p><p>Potential trace elements pollution in cities poses a threat to the environment and human health. Bio-availability affects toxicity levels of potential trace elementss on organisms. This study focused on exploring the relationship between soil, plant, and atmospheric dust pollution in Urumqi, a typical city in western China. It aims to help reduce pollution and protect residents' health. The following conclusions were drawn: 1) potential trace elementss like Cr, Pb, As, and Ni are more prevalent in atmospheric dust and soil than in plants. Chromium was in the first group, Cadmium and Mercury were in the second, and Plumb, Arsenic, and Nickel were in the third. Atmospheric dust and soil exhibit a significantly higher heavy metal content than plants. For example, The atmospheric dust summary Chromium content was up to 88 mg/kg. 2) Soil, atmospheric dust, and plants have the highest amount of residual form. Residual form had the highest percentage average of 53.3%, whereas Organic matter bound form had the lowest percentage of just 7.7%. The plants contained less residual heavy metal than the soil and atmospheric dust. 3) The correlation coefficient between the carbonated form content of Cd of soil and atmospheric dust is 0.95, which is closely related. Other potential trace elements show similar correlations in their bio-available contents in soil, plants, and atmospheric dust. This study suggests that in urban area, the focus should be on converting potential trace elements into residual form instead of increasing plants' absorption of potential trace elements.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bio-availability of potential trace elements in urban dust, soil, and plants in arid northwest China.\",\"authors\":\"Aliya Baidourela, Sisi Cheng, Ümüt Halik, Qian Sun, Kahaer Zhayimu, Cuifang Zhang, Kaixu Cui, Li Liu, Guili Sun, Yeerjiang Baiketuerhan, Weixia Wang\",\"doi\":\"10.1080/15226514.2024.2371916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Potential trace elements pollution in cities poses a threat to the environment and human health. Bio-availability affects toxicity levels of potential trace elementss on organisms. This study focused on exploring the relationship between soil, plant, and atmospheric dust pollution in Urumqi, a typical city in western China. It aims to help reduce pollution and protect residents' health. The following conclusions were drawn: 1) potential trace elementss like Cr, Pb, As, and Ni are more prevalent in atmospheric dust and soil than in plants. Chromium was in the first group, Cadmium and Mercury were in the second, and Plumb, Arsenic, and Nickel were in the third. Atmospheric dust and soil exhibit a significantly higher heavy metal content than plants. For example, The atmospheric dust summary Chromium content was up to 88 mg/kg. 2) Soil, atmospheric dust, and plants have the highest amount of residual form. Residual form had the highest percentage average of 53.3%, whereas Organic matter bound form had the lowest percentage of just 7.7%. The plants contained less residual heavy metal than the soil and atmospheric dust. 3) The correlation coefficient between the carbonated form content of Cd of soil and atmospheric dust is 0.95, which is closely related. Other potential trace elements show similar correlations in their bio-available contents in soil, plants, and atmospheric dust. This study suggests that in urban area, the focus should be on converting potential trace elements into residual form instead of increasing plants' absorption of potential trace elements.</p>\",\"PeriodicalId\":14235,\"journal\":{\"name\":\"International Journal of Phytoremediation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Phytoremediation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/15226514.2024.2371916\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytoremediation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2024.2371916","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Bio-availability of potential trace elements in urban dust, soil, and plants in arid northwest China.
Potential trace elements pollution in cities poses a threat to the environment and human health. Bio-availability affects toxicity levels of potential trace elementss on organisms. This study focused on exploring the relationship between soil, plant, and atmospheric dust pollution in Urumqi, a typical city in western China. It aims to help reduce pollution and protect residents' health. The following conclusions were drawn: 1) potential trace elementss like Cr, Pb, As, and Ni are more prevalent in atmospheric dust and soil than in plants. Chromium was in the first group, Cadmium and Mercury were in the second, and Plumb, Arsenic, and Nickel were in the third. Atmospheric dust and soil exhibit a significantly higher heavy metal content than plants. For example, The atmospheric dust summary Chromium content was up to 88 mg/kg. 2) Soil, atmospheric dust, and plants have the highest amount of residual form. Residual form had the highest percentage average of 53.3%, whereas Organic matter bound form had the lowest percentage of just 7.7%. The plants contained less residual heavy metal than the soil and atmospheric dust. 3) The correlation coefficient between the carbonated form content of Cd of soil and atmospheric dust is 0.95, which is closely related. Other potential trace elements show similar correlations in their bio-available contents in soil, plants, and atmospheric dust. This study suggests that in urban area, the focus should be on converting potential trace elements into residual form instead of increasing plants' absorption of potential trace elements.
期刊介绍:
The International Journal of Phytoremediation (IJP) is the first journal devoted to the publication of laboratory and field research describing the use of plant systems to solve environmental problems by enabling the remediation of soil, water, and air quality and by restoring ecosystem services in managed landscapes. Traditional phytoremediation has largely focused on soil and groundwater clean-up of hazardous contaminants. Phytotechnology expands this umbrella to include many of the natural resource management challenges we face in cities, on farms, and other landscapes more integrated with daily public activities. Wetlands that treat wastewater, rain gardens that treat stormwater, poplar tree plantings that contain pollutants, urban tree canopies that treat air pollution, and specialized plants that treat decommissioned mine sites are just a few examples of phytotechnologies.