Heesang Hong, Hye-Jin Kim, Hyun-Jun Kim, Cheorun Jo
{"title":"利用细胞外代谢组学方法研究鼠伤寒沙门氏菌血清型菌株的不同冷适应能力","authors":"Heesang Hong, Hye-Jin Kim, Hyun-Jun Kim, Cheorun Jo","doi":"10.1007/s10123-024-00556-0","DOIUrl":null,"url":null,"abstract":"<p><p>This study explored the extracellular metabolomic responses of three different Salmonella enterica serotype Typhimurium (S. Typhimurium) strains-ATCC 13311 (STy1), NCCP 16964 (STy4), and NCCP 16958 (STy8)-cultured at refrigeration temperatures. The objective was to identify the survival mechanisms of S. Typhimurium under cold stress by analyzing variations in their metabolomic profiles. Qualitative and quantitative assessments identified significant metabolite alterations on day 6, marking a critical inflection point. Key metabolites such as trehalose, proline, glycerol, and tryptophan were notably upregulated in response to cold stress. Through multivariate analyses, the strains were distinguished using three metabolites-4-aminobutyrate, ethanol, and uridine-as potential biomarkers, underscoring distinct metabolic responses to refrigeration. Specifically, STy1 exhibited unique adaptive capabilities through enhanced metabolism of betaine and 4-aminobutyrate. These findings highlight the variability in adaptive strategies among S. Typhimurium strains, suggesting that certain strains may possess more robust metabolic pathways for enhancing survival in refrigerated conditions.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of different cold adaptation abilities in Salmonella enterica serotype Typhimurium strains using extracellular metabolomic approach.\",\"authors\":\"Heesang Hong, Hye-Jin Kim, Hyun-Jun Kim, Cheorun Jo\",\"doi\":\"10.1007/s10123-024-00556-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study explored the extracellular metabolomic responses of three different Salmonella enterica serotype Typhimurium (S. Typhimurium) strains-ATCC 13311 (STy1), NCCP 16964 (STy4), and NCCP 16958 (STy8)-cultured at refrigeration temperatures. The objective was to identify the survival mechanisms of S. Typhimurium under cold stress by analyzing variations in their metabolomic profiles. Qualitative and quantitative assessments identified significant metabolite alterations on day 6, marking a critical inflection point. Key metabolites such as trehalose, proline, glycerol, and tryptophan were notably upregulated in response to cold stress. Through multivariate analyses, the strains were distinguished using three metabolites-4-aminobutyrate, ethanol, and uridine-as potential biomarkers, underscoring distinct metabolic responses to refrigeration. Specifically, STy1 exhibited unique adaptive capabilities through enhanced metabolism of betaine and 4-aminobutyrate. These findings highlight the variability in adaptive strategies among S. Typhimurium strains, suggesting that certain strains may possess more robust metabolic pathways for enhancing survival in refrigerated conditions.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10123-024-00556-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10123-024-00556-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Investigation of different cold adaptation abilities in Salmonella enterica serotype Typhimurium strains using extracellular metabolomic approach.
This study explored the extracellular metabolomic responses of three different Salmonella enterica serotype Typhimurium (S. Typhimurium) strains-ATCC 13311 (STy1), NCCP 16964 (STy4), and NCCP 16958 (STy8)-cultured at refrigeration temperatures. The objective was to identify the survival mechanisms of S. Typhimurium under cold stress by analyzing variations in their metabolomic profiles. Qualitative and quantitative assessments identified significant metabolite alterations on day 6, marking a critical inflection point. Key metabolites such as trehalose, proline, glycerol, and tryptophan were notably upregulated in response to cold stress. Through multivariate analyses, the strains were distinguished using three metabolites-4-aminobutyrate, ethanol, and uridine-as potential biomarkers, underscoring distinct metabolic responses to refrigeration. Specifically, STy1 exhibited unique adaptive capabilities through enhanced metabolism of betaine and 4-aminobutyrate. These findings highlight the variability in adaptive strategies among S. Typhimurium strains, suggesting that certain strains may possess more robust metabolic pathways for enhancing survival in refrigerated conditions.