{"title":"聚羧酸盐超塑化剂对碱渣建材强度和水化性能的影响。","authors":"Guide Liu, Xin Zheng, Guoliang Xie, Gongliang Liu","doi":"10.1080/15685551.2024.2376780","DOIUrl":null,"url":null,"abstract":"<p><p>To explore the effect of polycarboxylate superplasticizers on the strength and hydration performance of alkali slag building materials, this study prepared cross-linked polycarboxylate superplasticizers with different ratios of hydrogen peroxide, methyl allyl alcohol polyoxyethylene ether, acrylic acid, polyethylene glycol diacrylate, monomer aqueous solution, reducing agent, chain transfer agent, etc. according to certain ratios, and tested their effects on the hydration performance and strength of alkali slag building materials. Through experimental analysis, it was found that the higher the proportion of cross-linked polycarboxylate based high-efficiency water-reducing agents, the lower the initial flowability of building material slurry; The addition of cross-linked polycarboxylate water-reducing agent will prolong the initial and final setting time of alkali slag building materials, delaying the hydration time of building materials; Cross linked polycarboxylate superplasticizers can reduce the electrical conductivity of alkali slag building material slurry, delaying its hydration rate; Different ratios of water-reducing agents have a significant impact on the water reduction rate of alkali slag building materials, with V2 water-reducing agent having the highest water-reduction rate of 28.6%; Cross linked polycarboxylate superplasticizers can increase the flexural and compressive strength of alkali slag building materials. Therefore, cross-linked polycarboxylate water-reducing agents have shown great potential in regulating the properties of alkali slag building materials.</p>","PeriodicalId":11170,"journal":{"name":"Designed Monomers and Polymers","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11229711/pdf/","citationCount":"0","resultStr":"{\"title\":\"The effect of polycarboxylate superplasticizer on the strength and hydration performance of alkali slag building materials.\",\"authors\":\"Guide Liu, Xin Zheng, Guoliang Xie, Gongliang Liu\",\"doi\":\"10.1080/15685551.2024.2376780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To explore the effect of polycarboxylate superplasticizers on the strength and hydration performance of alkali slag building materials, this study prepared cross-linked polycarboxylate superplasticizers with different ratios of hydrogen peroxide, methyl allyl alcohol polyoxyethylene ether, acrylic acid, polyethylene glycol diacrylate, monomer aqueous solution, reducing agent, chain transfer agent, etc. according to certain ratios, and tested their effects on the hydration performance and strength of alkali slag building materials. Through experimental analysis, it was found that the higher the proportion of cross-linked polycarboxylate based high-efficiency water-reducing agents, the lower the initial flowability of building material slurry; The addition of cross-linked polycarboxylate water-reducing agent will prolong the initial and final setting time of alkali slag building materials, delaying the hydration time of building materials; Cross linked polycarboxylate superplasticizers can reduce the electrical conductivity of alkali slag building material slurry, delaying its hydration rate; Different ratios of water-reducing agents have a significant impact on the water reduction rate of alkali slag building materials, with V2 water-reducing agent having the highest water-reduction rate of 28.6%; Cross linked polycarboxylate superplasticizers can increase the flexural and compressive strength of alkali slag building materials. Therefore, cross-linked polycarboxylate water-reducing agents have shown great potential in regulating the properties of alkali slag building materials.</p>\",\"PeriodicalId\":11170,\"journal\":{\"name\":\"Designed Monomers and Polymers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11229711/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Designed Monomers and Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/15685551.2024.2376780\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designed Monomers and Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/15685551.2024.2376780","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
The effect of polycarboxylate superplasticizer on the strength and hydration performance of alkali slag building materials.
To explore the effect of polycarboxylate superplasticizers on the strength and hydration performance of alkali slag building materials, this study prepared cross-linked polycarboxylate superplasticizers with different ratios of hydrogen peroxide, methyl allyl alcohol polyoxyethylene ether, acrylic acid, polyethylene glycol diacrylate, monomer aqueous solution, reducing agent, chain transfer agent, etc. according to certain ratios, and tested their effects on the hydration performance and strength of alkali slag building materials. Through experimental analysis, it was found that the higher the proportion of cross-linked polycarboxylate based high-efficiency water-reducing agents, the lower the initial flowability of building material slurry; The addition of cross-linked polycarboxylate water-reducing agent will prolong the initial and final setting time of alkali slag building materials, delaying the hydration time of building materials; Cross linked polycarboxylate superplasticizers can reduce the electrical conductivity of alkali slag building material slurry, delaying its hydration rate; Different ratios of water-reducing agents have a significant impact on the water reduction rate of alkali slag building materials, with V2 water-reducing agent having the highest water-reduction rate of 28.6%; Cross linked polycarboxylate superplasticizers can increase the flexural and compressive strength of alkali slag building materials. Therefore, cross-linked polycarboxylate water-reducing agents have shown great potential in regulating the properties of alkali slag building materials.
期刊介绍:
Designed Monomers and Polymers ( DMP) publishes prompt peer-reviewed papers and short topical reviews on all areas of macromolecular design and applications. Emphasis is placed on the preparations of new monomers, including characterization and applications. Experiments should be presented in sufficient detail (including specific observations, precautionary notes, use of new materials, techniques, and their possible problems) that they could be reproduced by any researcher wishing to repeat the work.
The journal also includes macromolecular design of polymeric materials (such as polymeric biomaterials, biomedical polymers, etc.) with medical applications.
DMP provides an interface between organic and polymer chemistries and aims to bridge the gap between monomer synthesis and the design of new polymers. Submssions are invited in the areas including, but not limited to:
-macromolecular science, initiators, macroinitiators for macromolecular design
-kinetics, mechanism and modelling aspects of polymerization
-new methods of synthesis of known monomers
-new monomers (must show evidence for polymerization, e.g. polycondensation, sequential combination, oxidative coupling, radiation, plasma polymerization)
-functional prepolymers of various architectures such as hyperbranched polymers, telechelic polymers, macromonomers, or dendrimers
-new polymeric materials with biomedical applications