{"title":"揭示尼莫妥珠单抗对头颈部鳞癌患者 PD-L1 表达的调控机制:增强抗癌治疗策略的意义。","authors":"Minwan Hu , Borui Tang , Yuyang Dai , Xiuli Zhao","doi":"10.1016/j.cellsig.2024.111290","DOIUrl":null,"url":null,"abstract":"<div><p>The overexpression of programmed death ligand 1 (PD-L1) is associated with resistance to anticancer therapies and poor prognosis in patients with head and neck squamous cell carcinoma (HNSCC). Nimotuzumab, a humanized anti-epidermal growth factor receptor (EGFR) mAb, has been widely used clinically for treating several solid tumors. However, whether its anticancer effect involves a reduction in PD-L1 expression remains unclear. The current study aimed to investigate the regulatory effects and underlying mechanism of nimotuzumab on PD-L1 expression in HNSCC both <em>in vitro</em> and <em>in vivo</em>. <em>In vitro</em>, nimotuzumab inhibited IFN-γ-induced PD-L1 upregulation at both the transcriptional and protein levels in the HNSCC cell lines. Subsequent mechanism research revealed that nimotuzumab suppressed IFN-γ-stimulated PD-L1 upregulation mainly by inhibiting phosphorylation of EGFR/MEK/ERK pathway, which was further validated by MEK and ERK inhibitors. In a HNSCC tumor-bearing model, nimotuzumab significantly decreased PD-L1 expression during tumor progression or chemotherapy, and this reduction was accompanied by increased sensitivity of the tumor to docetaxel and atezolizumab. Additionally, nimotuzumab reversed PD-L1 upregulation when combined with Taxol + Cisplatin (TP) induction chemotherapy regimens and improved the CD4<sup>+</sup> and CD8<sup>+</sup> T cells infiltration in HNSCC patients. These findings provide new insights into the anticancer mechanisms of nimotuzumab in HNSCC.</p></div>","PeriodicalId":9902,"journal":{"name":"Cellular signalling","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the regulatory mechanism of nimotuzumab on PD-L1 expression in head and neck squamous cell carcinoma patients: Implications for enhanced anticancer treatment strategies\",\"authors\":\"Minwan Hu , Borui Tang , Yuyang Dai , Xiuli Zhao\",\"doi\":\"10.1016/j.cellsig.2024.111290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The overexpression of programmed death ligand 1 (PD-L1) is associated with resistance to anticancer therapies and poor prognosis in patients with head and neck squamous cell carcinoma (HNSCC). Nimotuzumab, a humanized anti-epidermal growth factor receptor (EGFR) mAb, has been widely used clinically for treating several solid tumors. However, whether its anticancer effect involves a reduction in PD-L1 expression remains unclear. The current study aimed to investigate the regulatory effects and underlying mechanism of nimotuzumab on PD-L1 expression in HNSCC both <em>in vitro</em> and <em>in vivo</em>. <em>In vitro</em>, nimotuzumab inhibited IFN-γ-induced PD-L1 upregulation at both the transcriptional and protein levels in the HNSCC cell lines. Subsequent mechanism research revealed that nimotuzumab suppressed IFN-γ-stimulated PD-L1 upregulation mainly by inhibiting phosphorylation of EGFR/MEK/ERK pathway, which was further validated by MEK and ERK inhibitors. In a HNSCC tumor-bearing model, nimotuzumab significantly decreased PD-L1 expression during tumor progression or chemotherapy, and this reduction was accompanied by increased sensitivity of the tumor to docetaxel and atezolizumab. Additionally, nimotuzumab reversed PD-L1 upregulation when combined with Taxol + Cisplatin (TP) induction chemotherapy regimens and improved the CD4<sup>+</sup> and CD8<sup>+</sup> T cells infiltration in HNSCC patients. These findings provide new insights into the anticancer mechanisms of nimotuzumab in HNSCC.</p></div>\",\"PeriodicalId\":9902,\"journal\":{\"name\":\"Cellular signalling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular signalling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898656824002584\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular signalling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898656824002584","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Unveiling the regulatory mechanism of nimotuzumab on PD-L1 expression in head and neck squamous cell carcinoma patients: Implications for enhanced anticancer treatment strategies
The overexpression of programmed death ligand 1 (PD-L1) is associated with resistance to anticancer therapies and poor prognosis in patients with head and neck squamous cell carcinoma (HNSCC). Nimotuzumab, a humanized anti-epidermal growth factor receptor (EGFR) mAb, has been widely used clinically for treating several solid tumors. However, whether its anticancer effect involves a reduction in PD-L1 expression remains unclear. The current study aimed to investigate the regulatory effects and underlying mechanism of nimotuzumab on PD-L1 expression in HNSCC both in vitro and in vivo. In vitro, nimotuzumab inhibited IFN-γ-induced PD-L1 upregulation at both the transcriptional and protein levels in the HNSCC cell lines. Subsequent mechanism research revealed that nimotuzumab suppressed IFN-γ-stimulated PD-L1 upregulation mainly by inhibiting phosphorylation of EGFR/MEK/ERK pathway, which was further validated by MEK and ERK inhibitors. In a HNSCC tumor-bearing model, nimotuzumab significantly decreased PD-L1 expression during tumor progression or chemotherapy, and this reduction was accompanied by increased sensitivity of the tumor to docetaxel and atezolizumab. Additionally, nimotuzumab reversed PD-L1 upregulation when combined with Taxol + Cisplatin (TP) induction chemotherapy regimens and improved the CD4+ and CD8+ T cells infiltration in HNSCC patients. These findings provide new insights into the anticancer mechanisms of nimotuzumab in HNSCC.
期刊介绍:
Cellular Signalling publishes original research describing fundamental and clinical findings on the mechanisms, actions and structural components of cellular signalling systems in vitro and in vivo.
Cellular Signalling aims at full length research papers defining signalling systems ranging from microorganisms to cells, tissues and higher organisms.