{"title":"Bombyx mori UFL1通过PERK调节宿主细胞凋亡,从而促进BmNPV增殖。","authors":"Yijun Zheng, Haonan Meng, Xiaochun Jiang, Shoujun Huang","doi":"10.1002/arch.22127","DOIUrl":null,"url":null,"abstract":"<p>Ubiquitin-fold modifier 1 (UFM1) is attached to protein substrates through the sequential activity of an E1 (UBA5)-E2 (UFC1)-E3 (UFL1) cascade. UFL1 is the E3 ligase for UFMylation in vertebrates. However, there have been no studies on UFL1 in silkworm to date. In this study, we identified a UFL1 ortholog in <i>Bombyx mori</i> genome. Spatio-temporal expression profiles showed that BmUFL1 expression was high in the midgut, epidermis, and testis and in the pupa–adult stage. BmUFL1 knockdown inhibited <i>B. mori</i> nucleopolyhedrovirus (BmNPV) proliferation, while BmUFL1 overexpression promoted BmNPV proliferation. Mechanically, protein kinase RNA-like endoplasmic reticulum kinase (PERK) signaling and cell apoptosis are involved in BmUFL1-regulated BmNPV proliferation. Overall, these results suggest that BmUFL1 facilitates BmNPV proliferation in silkworm.</p>","PeriodicalId":8281,"journal":{"name":"Archives of Insect Biochemistry and Physiology","volume":"116 3","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/arch.22127","citationCount":"0","resultStr":"{\"title\":\"Bombyx mori UFL1 facilitates BmNPV proliferation by regulating host cell apoptosis through PERK\",\"authors\":\"Yijun Zheng, Haonan Meng, Xiaochun Jiang, Shoujun Huang\",\"doi\":\"10.1002/arch.22127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ubiquitin-fold modifier 1 (UFM1) is attached to protein substrates through the sequential activity of an E1 (UBA5)-E2 (UFC1)-E3 (UFL1) cascade. UFL1 is the E3 ligase for UFMylation in vertebrates. However, there have been no studies on UFL1 in silkworm to date. In this study, we identified a UFL1 ortholog in <i>Bombyx mori</i> genome. Spatio-temporal expression profiles showed that BmUFL1 expression was high in the midgut, epidermis, and testis and in the pupa–adult stage. BmUFL1 knockdown inhibited <i>B. mori</i> nucleopolyhedrovirus (BmNPV) proliferation, while BmUFL1 overexpression promoted BmNPV proliferation. Mechanically, protein kinase RNA-like endoplasmic reticulum kinase (PERK) signaling and cell apoptosis are involved in BmUFL1-regulated BmNPV proliferation. Overall, these results suggest that BmUFL1 facilitates BmNPV proliferation in silkworm.</p>\",\"PeriodicalId\":8281,\"journal\":{\"name\":\"Archives of Insect Biochemistry and Physiology\",\"volume\":\"116 3\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/arch.22127\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Insect Biochemistry and Physiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/arch.22127\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Insect Biochemistry and Physiology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/arch.22127","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Bombyx mori UFL1 facilitates BmNPV proliferation by regulating host cell apoptosis through PERK
Ubiquitin-fold modifier 1 (UFM1) is attached to protein substrates through the sequential activity of an E1 (UBA5)-E2 (UFC1)-E3 (UFL1) cascade. UFL1 is the E3 ligase for UFMylation in vertebrates. However, there have been no studies on UFL1 in silkworm to date. In this study, we identified a UFL1 ortholog in Bombyx mori genome. Spatio-temporal expression profiles showed that BmUFL1 expression was high in the midgut, epidermis, and testis and in the pupa–adult stage. BmUFL1 knockdown inhibited B. mori nucleopolyhedrovirus (BmNPV) proliferation, while BmUFL1 overexpression promoted BmNPV proliferation. Mechanically, protein kinase RNA-like endoplasmic reticulum kinase (PERK) signaling and cell apoptosis are involved in BmUFL1-regulated BmNPV proliferation. Overall, these results suggest that BmUFL1 facilitates BmNPV proliferation in silkworm.
期刊介绍:
Archives of Insect Biochemistry and Physiology is an international journal that publishes articles in English that are of interest to insect biochemists and physiologists. Generally these articles will be in, or related to, one of the following subject areas: Behavior, Bioinformatics, Carbohydrates, Cell Line Development, Cell Signalling, Development, Drug Discovery, Endocrinology, Enzymes, Lipids, Molecular Biology, Neurobiology, Nucleic Acids, Nutrition, Peptides, Pharmacology, Pollinators, Proteins, Toxicology. Archives will publish only original articles. Articles that are confirmatory in nature or deal with analytical methods previously described will not be accepted.