Chatree Faikhamta, Samia Khan, Tharuesean Prasoplarb, Anupong Praisri, Naphat Suknarusaithagul
{"title":"职前教师在 STEM 方法课程中对模型和建模的概念理解","authors":"Chatree Faikhamta, Samia Khan, Tharuesean Prasoplarb, Anupong Praisri, Naphat Suknarusaithagul","doi":"10.1007/s11165-024-10184-3","DOIUrl":null,"url":null,"abstract":"<p>Models and modelling play a critical role in science education to engage students more fully in science practices. Few studies have investigated the nature of models and modelling in integrated STEM teacher education. This study examines pre-service science teachers’ (PSTs) understanding of the nature of models and modelling in a STEM methods course. Model and modelling for authentic STEM are used as a theoretical lens for conceptualising PSTs’ understanding of the nature of models and modelling. Interpretive research was used to analyse how this course contributed to PSTs’ understanding of the nature of models and modelling based on four dimensions: meanings, purposes, processes and the complexity of models and modelling. Data were collected through questionnaires. Inductive content analysis was used to reveal distinct patterns of PSTs’ understandings. The findings indicated that at the beginning of the course, PSTs understood that models were a replication of phenomena or a prototype. By the end of the course, they understood modelling as a practice to explain and predict phenomena in science to solve problems and improve the quality of life through engineering. By the end of the course, PSTs viewed modelling as a bridge between science and engineering within the context of an integrated STEM education. The PSTs showed marked shifts by the end of the course by demonstrating a deeper understanding of modelling as a dynamic process. PSTs saw the integration of science and engineering in STEM as a route for epistemic agency on behalf of their students and a greater appreciation of model complexity. This study suggests that introducing the nature of modelling in science and engineering assists the teaching of STEM. The model and modelling implications for STEM teacher education are discussed.</p>","PeriodicalId":47988,"journal":{"name":"Research in Science Education","volume":"70 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pre-service Teachers’ Conceptual Understandings of Models and Modelling in a STEM Methods Course\",\"authors\":\"Chatree Faikhamta, Samia Khan, Tharuesean Prasoplarb, Anupong Praisri, Naphat Suknarusaithagul\",\"doi\":\"10.1007/s11165-024-10184-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Models and modelling play a critical role in science education to engage students more fully in science practices. Few studies have investigated the nature of models and modelling in integrated STEM teacher education. This study examines pre-service science teachers’ (PSTs) understanding of the nature of models and modelling in a STEM methods course. Model and modelling for authentic STEM are used as a theoretical lens for conceptualising PSTs’ understanding of the nature of models and modelling. Interpretive research was used to analyse how this course contributed to PSTs’ understanding of the nature of models and modelling based on four dimensions: meanings, purposes, processes and the complexity of models and modelling. Data were collected through questionnaires. Inductive content analysis was used to reveal distinct patterns of PSTs’ understandings. The findings indicated that at the beginning of the course, PSTs understood that models were a replication of phenomena or a prototype. By the end of the course, they understood modelling as a practice to explain and predict phenomena in science to solve problems and improve the quality of life through engineering. By the end of the course, PSTs viewed modelling as a bridge between science and engineering within the context of an integrated STEM education. The PSTs showed marked shifts by the end of the course by demonstrating a deeper understanding of modelling as a dynamic process. PSTs saw the integration of science and engineering in STEM as a route for epistemic agency on behalf of their students and a greater appreciation of model complexity. This study suggests that introducing the nature of modelling in science and engineering assists the teaching of STEM. The model and modelling implications for STEM teacher education are discussed.</p>\",\"PeriodicalId\":47988,\"journal\":{\"name\":\"Research in Science Education\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in Science Education\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1007/s11165-024-10184-3\",\"RegionNum\":3,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Science Education","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1007/s11165-024-10184-3","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
Pre-service Teachers’ Conceptual Understandings of Models and Modelling in a STEM Methods Course
Models and modelling play a critical role in science education to engage students more fully in science practices. Few studies have investigated the nature of models and modelling in integrated STEM teacher education. This study examines pre-service science teachers’ (PSTs) understanding of the nature of models and modelling in a STEM methods course. Model and modelling for authentic STEM are used as a theoretical lens for conceptualising PSTs’ understanding of the nature of models and modelling. Interpretive research was used to analyse how this course contributed to PSTs’ understanding of the nature of models and modelling based on four dimensions: meanings, purposes, processes and the complexity of models and modelling. Data were collected through questionnaires. Inductive content analysis was used to reveal distinct patterns of PSTs’ understandings. The findings indicated that at the beginning of the course, PSTs understood that models were a replication of phenomena or a prototype. By the end of the course, they understood modelling as a practice to explain and predict phenomena in science to solve problems and improve the quality of life through engineering. By the end of the course, PSTs viewed modelling as a bridge between science and engineering within the context of an integrated STEM education. The PSTs showed marked shifts by the end of the course by demonstrating a deeper understanding of modelling as a dynamic process. PSTs saw the integration of science and engineering in STEM as a route for epistemic agency on behalf of their students and a greater appreciation of model complexity. This study suggests that introducing the nature of modelling in science and engineering assists the teaching of STEM. The model and modelling implications for STEM teacher education are discussed.
期刊介绍:
2020 Five-Year Impact Factor: 4.021
2020 Impact Factor: 5.439
Ranking: 107/1319 (Education) – Scopus
2020 CiteScore 34.7 – Scopus
Research in Science Education (RISE ) is highly regarded and widely recognised as a leading international journal for the promotion of scholarly science education research that is of interest to a wide readership.
RISE publishes scholarly work that promotes science education research in all contexts and at all levels of education. This intention is aligned with the goals of Australasian Science Education Research Association (ASERA), the association connected with the journal.
You should consider submitting your manscript to RISE if your research:
Examines contexts such as early childhood, primary, secondary, tertiary, workplace, and informal learning as they relate to science education; and
Advances our knowledge in science education research rather than reproducing what we already know.
RISE will consider scholarly works that explore areas such as STEM, health, environment, cognitive science, neuroscience, psychology and higher education where science education is forefronted.
The scholarly works of interest published within RISE reflect and speak to a diversity of opinions, approaches and contexts. Additionally, the journal’s editorial team welcomes a diversity of form in relation to science education-focused submissions. With this in mind, RISE seeks to publish empirical research papers.
Empircal contributions are:
Theoretically or conceptually grounded;
Relevant to science education theory and practice;
Highlight limitations of the study; and
Identify possible future research opportunities.
From time to time, we commission independent reviewers to undertake book reviews of recent monographs, edited collections and/or textbooks.
Before you submit your manuscript to RISE, please consider the following checklist. Your paper is:
No longer than 6000 words, including references.
Sufficiently proof read to ensure strong grammar, syntax, coherence and good readability;
Explicitly stating the significant and/or innovative contribution to the body of knowledge in your field in science education;
Internationalised in the sense that your work has relevance beyond your context to a broader audience; and
Making a contribution to the ongoing conversation by engaging substantively with prior research published in RISE.
While we encourage authors to submit papers to a maximum length of 6000 words, in rare cases where the authors make a persuasive case that a work makes a highly significant original contribution to knowledge in science education, the editors may choose to publish longer works.