Vishalkumar Rajeshbhai Gohel, Margarita Chetyrkina, Andrey Gaev, Nikolay P. Simonenko, Tatiana L. Simonenko, Philipp Yu. Gorobtsov, Nikita A. Fisenko, Darya A. Dudorova, Valeriy Zaytsev, Anna Lantsberg, Elizaveta P. Simonenko, Albert G. Nasibulin and Fedor S. Fedorov
{"title":"多氧化物组合文库:融合合成方法和添加技术,打造高度正交的电子鼻","authors":"Vishalkumar Rajeshbhai Gohel, Margarita Chetyrkina, Andrey Gaev, Nikolay P. Simonenko, Tatiana L. Simonenko, Philipp Yu. Gorobtsov, Nikita A. Fisenko, Darya A. Dudorova, Valeriy Zaytsev, Anna Lantsberg, Elizaveta P. Simonenko, Albert G. Nasibulin and Fedor S. Fedorov","doi":"10.1039/D4LC00252K","DOIUrl":null,"url":null,"abstract":"<p >This study evaluates the performance advancement of electronic noses, on-chip engineered multisensor systems, exploiting a combinatorial approach. We analyze a spectrum of metal oxide semiconductor materials produced by individual methods of liquid-phase synthesis and a combination of chemical deposition and sol–gel methods with hydrothermal treatment. These methods are demonstrated to enable obtaining a fairly wide range of nanomaterials that differ significantly in chemical composition, crystal structure, and morphological features. While synthesis routes foster diversity in material properties, microplotter printing ensures targeted precision in making on-chip arrays for evaluation of a combinatorial selectivity concept in the task of organic vapor, like alcohol homologs, acetone, and benzene, classification. The synthesized nanomaterials demonstrate a high chemiresistive response, with a limit of detection beyond ppm level. A specific combination of materials is demonstrated to be relevant when the number of sensors is low; however, such importance diminishes with an increase in the number of sensors. We show that on-chip material combinations could favor selectivity to a specific analyte, disregarding the others. Hence, modern synthesis methods and printing protocols supported by combinatorial analysis might pave the way for fabricating on-chip orthogonal multisensor systems.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multioxide combinatorial libraries: fusing synthetic approaches and additive technologies for highly orthogonal electronic noses†\",\"authors\":\"Vishalkumar Rajeshbhai Gohel, Margarita Chetyrkina, Andrey Gaev, Nikolay P. Simonenko, Tatiana L. Simonenko, Philipp Yu. Gorobtsov, Nikita A. Fisenko, Darya A. Dudorova, Valeriy Zaytsev, Anna Lantsberg, Elizaveta P. Simonenko, Albert G. Nasibulin and Fedor S. Fedorov\",\"doi\":\"10.1039/D4LC00252K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study evaluates the performance advancement of electronic noses, on-chip engineered multisensor systems, exploiting a combinatorial approach. We analyze a spectrum of metal oxide semiconductor materials produced by individual methods of liquid-phase synthesis and a combination of chemical deposition and sol–gel methods with hydrothermal treatment. These methods are demonstrated to enable obtaining a fairly wide range of nanomaterials that differ significantly in chemical composition, crystal structure, and morphological features. While synthesis routes foster diversity in material properties, microplotter printing ensures targeted precision in making on-chip arrays for evaluation of a combinatorial selectivity concept in the task of organic vapor, like alcohol homologs, acetone, and benzene, classification. The synthesized nanomaterials demonstrate a high chemiresistive response, with a limit of detection beyond ppm level. A specific combination of materials is demonstrated to be relevant when the number of sensors is low; however, such importance diminishes with an increase in the number of sensors. We show that on-chip material combinations could favor selectivity to a specific analyte, disregarding the others. Hence, modern synthesis methods and printing protocols supported by combinatorial analysis might pave the way for fabricating on-chip orthogonal multisensor systems.</p>\",\"PeriodicalId\":85,\"journal\":{\"name\":\"Lab on a Chip\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lab on a Chip\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/lc/d4lc00252k\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/lc/d4lc00252k","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Multioxide combinatorial libraries: fusing synthetic approaches and additive technologies for highly orthogonal electronic noses†
This study evaluates the performance advancement of electronic noses, on-chip engineered multisensor systems, exploiting a combinatorial approach. We analyze a spectrum of metal oxide semiconductor materials produced by individual methods of liquid-phase synthesis and a combination of chemical deposition and sol–gel methods with hydrothermal treatment. These methods are demonstrated to enable obtaining a fairly wide range of nanomaterials that differ significantly in chemical composition, crystal structure, and morphological features. While synthesis routes foster diversity in material properties, microplotter printing ensures targeted precision in making on-chip arrays for evaluation of a combinatorial selectivity concept in the task of organic vapor, like alcohol homologs, acetone, and benzene, classification. The synthesized nanomaterials demonstrate a high chemiresistive response, with a limit of detection beyond ppm level. A specific combination of materials is demonstrated to be relevant when the number of sensors is low; however, such importance diminishes with an increase in the number of sensors. We show that on-chip material combinations could favor selectivity to a specific analyte, disregarding the others. Hence, modern synthesis methods and printing protocols supported by combinatorial analysis might pave the way for fabricating on-chip orthogonal multisensor systems.
期刊介绍:
Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.