关于黎曼zeta函数零点间r $r$ 缺口的说明

IF 0.8 3区 数学 Q2 MATHEMATICS
Shōta Inoue
{"title":"关于黎曼zeta函数零点间r $r$ 缺口的说明","authors":"Shōta Inoue","doi":"10.1112/blms.13054","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we prove Selberg's announced result on <span></span><math>\n <semantics>\n <mi>r</mi>\n <annotation>$r$</annotation>\n </semantics></math>-gaps between zeros of the Riemann zeta-function <span></span><math>\n <semantics>\n <mi>ζ</mi>\n <annotation>$\\zeta$</annotation>\n </semantics></math>. Our proof uses a result on variations of <span></span><math>\n <semantics>\n <mrow>\n <mo>arg</mo>\n <mi>ζ</mi>\n </mrow>\n <annotation>$\\arg \\zeta$</annotation>\n </semantics></math> by Tsang based on Selberg's method. The same result with explicit constants under the Riemann Hypothesis has been obtained by Conrey and Turnage-Butterbaugh using a different method. We explain how to obtain explicit constants under the Riemann Hypothesis using our approach which is based on Selberg's and Tsang's arguments.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 7","pages":"2268-2277"},"PeriodicalIF":0.8000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on \\n \\n r\\n $r$\\n -gaps between zeros of the Riemann zeta-function\",\"authors\":\"Shōta Inoue\",\"doi\":\"10.1112/blms.13054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we prove Selberg's announced result on <span></span><math>\\n <semantics>\\n <mi>r</mi>\\n <annotation>$r$</annotation>\\n </semantics></math>-gaps between zeros of the Riemann zeta-function <span></span><math>\\n <semantics>\\n <mi>ζ</mi>\\n <annotation>$\\\\zeta$</annotation>\\n </semantics></math>. Our proof uses a result on variations of <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>arg</mo>\\n <mi>ζ</mi>\\n </mrow>\\n <annotation>$\\\\arg \\\\zeta$</annotation>\\n </semantics></math> by Tsang based on Selberg's method. The same result with explicit constants under the Riemann Hypothesis has been obtained by Conrey and Turnage-Butterbaugh using a different method. We explain how to obtain explicit constants under the Riemann Hypothesis using our approach which is based on Selberg's and Tsang's arguments.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 7\",\"pages\":\"2268-2277\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13054\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13054","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了塞尔伯格宣布的关于黎曼zeta函数ζ $\zeta$ 的零点间r $r$ -间隙的结果。我们的证明使用了曾氏基于塞尔伯格方法的 arg ζ $\arg \zeta$ 变化结果。康雷(Conrey)和特纳吉-巴特鲍(Turnage-Butterbaugh)用不同的方法得到了黎曼假说下具有显式常数的相同结果。我们将解释如何根据塞尔伯格和曾氏的论证,用我们的方法得到黎曼假设下的显式常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on r $r$ -gaps between zeros of the Riemann zeta-function

In this paper, we prove Selberg's announced result on r $r$ -gaps between zeros of the Riemann zeta-function ζ $\zeta$ . Our proof uses a result on variations of arg ζ $\arg \zeta$ by Tsang based on Selberg's method. The same result with explicit constants under the Riemann Hypothesis has been obtained by Conrey and Turnage-Butterbaugh using a different method. We explain how to obtain explicit constants under the Riemann Hypothesis using our approach which is based on Selberg's and Tsang's arguments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信