特征叶形 - 综述

IF 0.8 3区 数学 Q2 MATHEMATICS
Fabrizio Anella, Daniel Huybrechts
{"title":"特征叶形 - 综述","authors":"Fabrizio Anella,&nbsp;Daniel Huybrechts","doi":"10.1112/blms.13107","DOIUrl":null,"url":null,"abstract":"<p>This is a survey article, with essentially complete proofs, of a series of recent results concerning the geometry of the characteristic foliation on smooth divisors in compact hyperkähler manifolds, starting with work by Hwang–Viehweg, but also covering articles by Amerik–Campana and Abugaliev. The restriction of the holomorphic symplectic form on a hyperkähler manifold <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> to a smooth hypersurface <span></span><math>\n <semantics>\n <mrow>\n <mi>D</mi>\n <mo>⊂</mo>\n <mi>X</mi>\n </mrow>\n <annotation>$D\\subset X$</annotation>\n </semantics></math> leads to a regular foliation <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n <mo>⊂</mo>\n <msub>\n <mi>T</mi>\n <mi>D</mi>\n </msub>\n </mrow>\n <annotation>${\\mathcal {F}}\\subset {\\mathcal {T}}_D$</annotation>\n </semantics></math> of rank 1, the characteristic foliation. The picture is complete in dimension 4 and shows that the behaviour of the leaves of <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>${\\mathcal {F}}$</annotation>\n </semantics></math> on <span></span><math>\n <semantics>\n <mi>D</mi>\n <annotation>$D$</annotation>\n </semantics></math> is determined by the Beauville–Bogomolov square <span></span><math>\n <semantics>\n <mrow>\n <mi>q</mi>\n <mo>(</mo>\n <mi>D</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$q(D)$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mi>D</mi>\n <annotation>$D$</annotation>\n </semantics></math>. In higher dimensions, some of the results depend on the abundance conjecture for <span></span><math>\n <semantics>\n <mi>D</mi>\n <annotation>$D$</annotation>\n </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 7","pages":"2231-2249"},"PeriodicalIF":0.8000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13107","citationCount":"0","resultStr":"{\"title\":\"Characteristic foliations — A survey\",\"authors\":\"Fabrizio Anella,&nbsp;Daniel Huybrechts\",\"doi\":\"10.1112/blms.13107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This is a survey article, with essentially complete proofs, of a series of recent results concerning the geometry of the characteristic foliation on smooth divisors in compact hyperkähler manifolds, starting with work by Hwang–Viehweg, but also covering articles by Amerik–Campana and Abugaliev. The restriction of the holomorphic symplectic form on a hyperkähler manifold <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math> to a smooth hypersurface <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>D</mi>\\n <mo>⊂</mo>\\n <mi>X</mi>\\n </mrow>\\n <annotation>$D\\\\subset X$</annotation>\\n </semantics></math> leads to a regular foliation <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>F</mi>\\n <mo>⊂</mo>\\n <msub>\\n <mi>T</mi>\\n <mi>D</mi>\\n </msub>\\n </mrow>\\n <annotation>${\\\\mathcal {F}}\\\\subset {\\\\mathcal {T}}_D$</annotation>\\n </semantics></math> of rank 1, the characteristic foliation. The picture is complete in dimension 4 and shows that the behaviour of the leaves of <span></span><math>\\n <semantics>\\n <mi>F</mi>\\n <annotation>${\\\\mathcal {F}}$</annotation>\\n </semantics></math> on <span></span><math>\\n <semantics>\\n <mi>D</mi>\\n <annotation>$D$</annotation>\\n </semantics></math> is determined by the Beauville–Bogomolov square <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n <mo>(</mo>\\n <mi>D</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$q(D)$</annotation>\\n </semantics></math> of <span></span><math>\\n <semantics>\\n <mi>D</mi>\\n <annotation>$D$</annotation>\\n </semantics></math>. In higher dimensions, some of the results depend on the abundance conjecture for <span></span><math>\\n <semantics>\\n <mi>D</mi>\\n <annotation>$D$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 7\",\"pages\":\"2231-2249\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13107\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13107\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13107","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

这是一篇概览性文章,基本完整地证明了一系列有关紧凑超卡勒流形中光滑分维上特征折射几何的最新结果,从黄-维赫韦格的工作开始,也包括阿梅里克-坎帕纳和阿布加列夫的文章。超凯勒流形 X $X$ 上的全形交映形式对光滑超曲面 D ⊂ X $D\subset X$ 的限制导致了秩为 1 的正则对折 F ⊂ T D ${\mathcal {F}\subset {\mathcal {T}}_D$,即特征对折。这幅图在维度 4 中是完整的,它表明 F ${\mathcal {F}}$ 的叶在 D $D$ 上的行为是由 D $D$ 的波维尔-波哥莫洛夫平方 q ( D ) $q(D)$ 决定的。在更高维度上,一些结果取决于 D $D$ 的丰度猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Characteristic foliations — A survey

Characteristic foliations — A survey

This is a survey article, with essentially complete proofs, of a series of recent results concerning the geometry of the characteristic foliation on smooth divisors in compact hyperkähler manifolds, starting with work by Hwang–Viehweg, but also covering articles by Amerik–Campana and Abugaliev. The restriction of the holomorphic symplectic form on a hyperkähler manifold X $X$ to a smooth hypersurface D X $D\subset X$ leads to a regular foliation F T D ${\mathcal {F}}\subset {\mathcal {T}}_D$ of rank 1, the characteristic foliation. The picture is complete in dimension 4 and shows that the behaviour of the leaves of F ${\mathcal {F}}$ on D $D$ is determined by the Beauville–Bogomolov square q ( D ) $q(D)$ of D $D$ . In higher dimensions, some of the results depend on the abundance conjecture for D $D$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信