p $p$ 动力瓦瑟斯坦距离中弗拉索夫-泊松系统的稳定性估计值

IF 0.8 3区 数学 Q2 MATHEMATICS
Mikaela Iacobelli, Jonathan Junné
{"title":"p $p$ 动力瓦瑟斯坦距离中弗拉索夫-泊松系统的稳定性估计值","authors":"Mikaela Iacobelli,&nbsp;Jonathan Junné","doi":"10.1112/blms.13053","DOIUrl":null,"url":null,"abstract":"<p>We extend Loeper's <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mn>2</mn>\n </msup>\n <annotation>$L^2$</annotation>\n </semantics></math>-estimate (Theorem 2.9 in <i>J. Math. Pures Appl</i>. (9) <b>86</b> (2006), no. 1, 68–79) relating the force fields to the densities for the Vlasov–Poisson system to <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mi>p</mi>\n </msup>\n <annotation>$L^p$</annotation>\n </semantics></math>, with <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>&lt;</mo>\n <mi>p</mi>\n <mo>&lt;</mo>\n <mo>+</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$1 &amp;lt; p &amp;lt;+\\infty$</annotation>\n </semantics></math>, based on the Helmholtz–Weyl decomposition. This allows us to generalize both the classical Loeper's 2-Wasserstein stability estimate (Theorem 1.2 in <i>J. Math. Pures Appl</i>. (9) <b>86</b> (2006), no. 1, 68–79) and the recent stability estimate by the first author relying on the newly introduced kinetic Wasserstein distance (Theorem 3.1 in <i>Arch Rational Mech. Anal</i>. <b>244</b> (2022), no. 1, 27–50) to kinetic Wasserstein distances of order <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>&lt;</mo>\n <mi>p</mi>\n <mo>&lt;</mo>\n <mo>+</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$1 &amp;lt;p&amp;lt;+\\infty$</annotation>\n </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 7","pages":"2250-2267"},"PeriodicalIF":0.8000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13053","citationCount":"0","resultStr":"{\"title\":\"Stability estimates for the Vlasov–Poisson system in \\n \\n p\\n $p$\\n -kinetic Wasserstein distances\",\"authors\":\"Mikaela Iacobelli,&nbsp;Jonathan Junné\",\"doi\":\"10.1112/blms.13053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We extend Loeper's <span></span><math>\\n <semantics>\\n <msup>\\n <mi>L</mi>\\n <mn>2</mn>\\n </msup>\\n <annotation>$L^2$</annotation>\\n </semantics></math>-estimate (Theorem 2.9 in <i>J. Math. Pures Appl</i>. (9) <b>86</b> (2006), no. 1, 68–79) relating the force fields to the densities for the Vlasov–Poisson system to <span></span><math>\\n <semantics>\\n <msup>\\n <mi>L</mi>\\n <mi>p</mi>\\n </msup>\\n <annotation>$L^p$</annotation>\\n </semantics></math>, with <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>1</mn>\\n <mo>&lt;</mo>\\n <mi>p</mi>\\n <mo>&lt;</mo>\\n <mo>+</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$1 &amp;lt; p &amp;lt;+\\\\infty$</annotation>\\n </semantics></math>, based on the Helmholtz–Weyl decomposition. This allows us to generalize both the classical Loeper's 2-Wasserstein stability estimate (Theorem 1.2 in <i>J. Math. Pures Appl</i>. (9) <b>86</b> (2006), no. 1, 68–79) and the recent stability estimate by the first author relying on the newly introduced kinetic Wasserstein distance (Theorem 3.1 in <i>Arch Rational Mech. Anal</i>. <b>244</b> (2022), no. 1, 27–50) to kinetic Wasserstein distances of order <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>1</mn>\\n <mo>&lt;</mo>\\n <mi>p</mi>\\n <mo>&lt;</mo>\\n <mo>+</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$1 &amp;lt;p&amp;lt;+\\\\infty$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 7\",\"pages\":\"2250-2267\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13053\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13053\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13053","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们将 Loeper 的 L 2 $L^2$ 估算(《数学应用》第 86 (9)期,第 1 号,68-79 中的定理 2.9)扩展到 L p $L^p$ ,其中有 1。(9) 86 (2006), no. 1, 68-79),将 Vlasov-Poisson 系统的力场与密度关系扩展到 L p $L^p$ ,其中 1 < p < + ∞ $1 &lt; p &;lt;+\infty$ 基于亥姆霍兹-韦尔分解。这使我们能够推广经典的 Loeper 2-Wasserstein 稳定性估计(《数学应用》第 1.2 条定理)。(9) 86 (2006), no. 1, 68-79)和第一作者最近基于新引入的动力学瓦瑟斯坦距离的稳定性估计(Theorem 3.1 in Arch Rational Mech.Anal.244 (2022), no. 1, 27-50) 到阶为 1 < p < + ∞ $1 &lt;p&lt;+\infty$ 的动力学瓦瑟斯坦距离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability estimates for the Vlasov–Poisson system in p $p$ -kinetic Wasserstein distances

We extend Loeper's L 2 $L^2$ -estimate (Theorem 2.9 in J. Math. Pures Appl. (9) 86 (2006), no. 1, 68–79) relating the force fields to the densities for the Vlasov–Poisson system to L p $L^p$ , with 1 < p < + $1 &lt; p &lt;+\infty$ , based on the Helmholtz–Weyl decomposition. This allows us to generalize both the classical Loeper's 2-Wasserstein stability estimate (Theorem 1.2 in J. Math. Pures Appl. (9) 86 (2006), no. 1, 68–79) and the recent stability estimate by the first author relying on the newly introduced kinetic Wasserstein distance (Theorem 3.1 in Arch Rational Mech. Anal. 244 (2022), no. 1, 27–50) to kinetic Wasserstein distances of order 1 < p < + $1 &lt;p&lt;+\infty$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信