无性群上分级 PI 算法的最小品种

IF 0.8 3区 数学 Q2 MATHEMATICS
Sebastiano Argenti, Onofrio Mario Di Vincenzo
{"title":"无性群上分级 PI 算法的最小品种","authors":"Sebastiano Argenti,&nbsp;Onofrio Mario Di Vincenzo","doi":"10.1112/blms.13064","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math> be a field of characteristic zero and <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> a finite abelian group. In this paper, we prove that an affine variety of <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>-graded PI-algebras is minimal if and only if it is generated by a graded algebra <span></span><math>\n <semantics>\n <mrow>\n <mi>U</mi>\n <mi>T</mi>\n <mo>(</mo>\n <msub>\n <mi>A</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <mi>⋯</mi>\n <mo>,</mo>\n <msub>\n <mi>A</mi>\n <mi>m</mi>\n </msub>\n <mo>;</mo>\n <mi>γ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$UT(A_1,\\dots,A_m;\\gamma)$</annotation>\n </semantics></math> of upper block triangular matrices where <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>A</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <mi>⋯</mi>\n <mo>,</mo>\n <msub>\n <mi>A</mi>\n <mi>m</mi>\n </msub>\n </mrow>\n <annotation>$A_1,\\dots,A_m$</annotation>\n </semantics></math> are finite-dimensional <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>-simple algebras.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 7","pages":"2441-2459"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimal varieties of graded PI-algebras over abelian groups\",\"authors\":\"Sebastiano Argenti,&nbsp;Onofrio Mario Di Vincenzo\",\"doi\":\"10.1112/blms.13064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mi>F</mi>\\n <annotation>$F$</annotation>\\n </semantics></math> be a field of characteristic zero and <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math> a finite abelian group. In this paper, we prove that an affine variety of <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math>-graded PI-algebras is minimal if and only if it is generated by a graded algebra <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>U</mi>\\n <mi>T</mi>\\n <mo>(</mo>\\n <msub>\\n <mi>A</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <mi>⋯</mi>\\n <mo>,</mo>\\n <msub>\\n <mi>A</mi>\\n <mi>m</mi>\\n </msub>\\n <mo>;</mo>\\n <mi>γ</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$UT(A_1,\\\\dots,A_m;\\\\gamma)$</annotation>\\n </semantics></math> of upper block triangular matrices where <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>A</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <mi>⋯</mi>\\n <mo>,</mo>\\n <msub>\\n <mi>A</mi>\\n <mi>m</mi>\\n </msub>\\n </mrow>\\n <annotation>$A_1,\\\\dots,A_m$</annotation>\\n </semantics></math> are finite-dimensional <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math>-simple algebras.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 7\",\"pages\":\"2441-2459\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13064\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13064","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 F $F$ 为特征为零的域,G $G$ 为有限无边群。本文将证明,当且仅当 G $G$ 分级 PI 算法的仿射变种是由上块三角形矩阵的分级代数 U T ( A 1 , ⋯ , A m ; γ ) $UT(A_1,\dots,A_m;\gamma)$ 生成时,它是最小的,其中 A 1 , ⋯ , A m $A_1,\dots,A_m$ 是有限维的 G $G$ 简单算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimal varieties of graded PI-algebras over abelian groups

Let F $F$ be a field of characteristic zero and G $G$ a finite abelian group. In this paper, we prove that an affine variety of G $G$ -graded PI-algebras is minimal if and only if it is generated by a graded algebra U T ( A 1 , , A m ; γ ) $UT(A_1,\dots,A_m;\gamma)$ of upper block triangular matrices where A 1 , , A m $A_1,\dots,A_m$ are finite-dimensional G $G$ -simple algebras.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信