关于超循环算子集

IF 0.8 3区 数学 Q2 MATHEMATICS
Thiago R. Alves, Gustavo C. Souza
{"title":"关于超循环算子集","authors":"Thiago R. Alves,&nbsp;Gustavo C. Souza","doi":"10.1112/blms.13067","DOIUrl":null,"url":null,"abstract":"<p>In this article, we address a problem posed by Bayart regarding the existence of an infinite-dimensional closed vector subspace (excluding the null operator) within the set of supercyclic operators on Banach spaces. We fully resolve this problem by establishing the existence of the closed subspace. Furthermore, we prove that the set of supercyclic operators on <span></span><math>\n <semantics>\n <msub>\n <mi>ℓ</mi>\n <mn>1</mn>\n </msub>\n <annotation>$\\ell _1$</annotation>\n </semantics></math> contains, up to the null operator, an isometric copy of <span></span><math>\n <semantics>\n <msub>\n <mi>ℓ</mi>\n <mn>1</mn>\n </msub>\n <annotation>$\\ell _1$</annotation>\n </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 7","pages":"2483-2494"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the set of supercyclic operators\",\"authors\":\"Thiago R. Alves,&nbsp;Gustavo C. Souza\",\"doi\":\"10.1112/blms.13067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we address a problem posed by Bayart regarding the existence of an infinite-dimensional closed vector subspace (excluding the null operator) within the set of supercyclic operators on Banach spaces. We fully resolve this problem by establishing the existence of the closed subspace. Furthermore, we prove that the set of supercyclic operators on <span></span><math>\\n <semantics>\\n <msub>\\n <mi>ℓ</mi>\\n <mn>1</mn>\\n </msub>\\n <annotation>$\\\\ell _1$</annotation>\\n </semantics></math> contains, up to the null operator, an isometric copy of <span></span><math>\\n <semantics>\\n <msub>\\n <mi>ℓ</mi>\\n <mn>1</mn>\\n </msub>\\n <annotation>$\\\\ell _1$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 7\",\"pages\":\"2483-2494\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13067\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13067","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这篇文章中,我们讨论了巴亚特提出的一个问题,即在巴拿赫空间上的超循环算子集合中是否存在一个无限维的封闭向量子空间(不包括空算子)。我们通过确定封闭子空间的存在,完全解决了这个问题。此外,我们还证明了 ℓ 1 $\ell _1$ 上的超循环算子集合包含了空算子,即 ℓ 1 $\ell _1$ 的等距副本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the set of supercyclic operators

In this article, we address a problem posed by Bayart regarding the existence of an infinite-dimensional closed vector subspace (excluding the null operator) within the set of supercyclic operators on Banach spaces. We fully resolve this problem by establishing the existence of the closed subspace. Furthermore, we prove that the set of supercyclic operators on 1 $\ell _1$ contains, up to the null operator, an isometric copy of 1 $\ell _1$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信