用理想和子代数描述李代数的特征

IF 0.8 3区 数学 Q2 MATHEMATICS
Vladimir Dotsenko, Xabier García-Martínez
{"title":"用理想和子代数描述李代数的特征","authors":"Vladimir Dotsenko,&nbsp;Xabier García-Martínez","doi":"10.1112/blms.13062","DOIUrl":null,"url":null,"abstract":"<p>We prove that if, for a non-trivial variety of non-associative algebras, every subalgebra of every free algebra is free and <span></span><math>\n <semantics>\n <msup>\n <mi>I</mi>\n <mn>2</mn>\n </msup>\n <annotation>$I^2$</annotation>\n </semantics></math> is an ideal whenever <span></span><math>\n <semantics>\n <mi>I</mi>\n <annotation>$I$</annotation>\n </semantics></math> is an ideal, then this variety coincides with the variety of all Lie algebras.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 7","pages":"2408-2423"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A characterisation of Lie algebras using ideals and subalgebras\",\"authors\":\"Vladimir Dotsenko,&nbsp;Xabier García-Martínez\",\"doi\":\"10.1112/blms.13062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that if, for a non-trivial variety of non-associative algebras, every subalgebra of every free algebra is free and <span></span><math>\\n <semantics>\\n <msup>\\n <mi>I</mi>\\n <mn>2</mn>\\n </msup>\\n <annotation>$I^2$</annotation>\\n </semantics></math> is an ideal whenever <span></span><math>\\n <semantics>\\n <mi>I</mi>\\n <annotation>$I$</annotation>\\n </semantics></math> is an ideal, then this variety coincides with the variety of all Lie algebras.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 7\",\"pages\":\"2408-2423\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13062\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13062","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,如果对于一个非偶联代数的非偶联种类,每个自由代数的每个子代数都是自由的,并且 I 2 $I^2$ 是一个理想,只要 I $I$ 是一个理想,那么这个种类就与所有李代数的种类重合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A characterisation of Lie algebras using ideals and subalgebras

We prove that if, for a non-trivial variety of non-associative algebras, every subalgebra of every free algebra is free and I 2 $I^2$ is an ideal whenever I $I$ is an ideal, then this variety coincides with the variety of all Lie algebras.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信