具有渐近非负 Bakry-Émery Ricci 曲率的流形上的 Sobolev 不等式

IF 0.8 3区 数学 Q2 MATHEMATICS
Yuxin Dong, Hezi Lin, Lingen Lu
{"title":"具有渐近非负 Bakry-Émery Ricci 曲率的流形上的 Sobolev 不等式","authors":"Yuxin Dong,&nbsp;Hezi Lin,&nbsp;Lingen Lu","doi":"10.1112/blms.13061","DOIUrl":null,"url":null,"abstract":"<p>In this paper, inspired by Brendle (Comm. Pure Appl. Math. <b>76</b> (2023), 2192) and Johne (arXiv:2103.08496, 2021), we prove a Sobolev inequality on manifolds with density and asymptotically nonnegative Bakry–Émery Ricci curvature.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 7","pages":"2395-2407"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sobolev inequality on manifolds with asymptotically nonnegative Bakry–Émery Ricci curvature\",\"authors\":\"Yuxin Dong,&nbsp;Hezi Lin,&nbsp;Lingen Lu\",\"doi\":\"10.1112/blms.13061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, inspired by Brendle (Comm. Pure Appl. Math. <b>76</b> (2023), 2192) and Johne (arXiv:2103.08496, 2021), we prove a Sobolev inequality on manifolds with density and asymptotically nonnegative Bakry–Émery Ricci curvature.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 7\",\"pages\":\"2395-2407\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13061\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13061","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文受布伦德(Comm.Pure Appl.76 (2023), 2192)和 Johne(arXiv:2103.08496, 2021)的启发,我们证明了具有密度和渐近非负 Bakry-Émery Ricci 曲率的流形上的索博列夫不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sobolev inequality on manifolds with asymptotically nonnegative Bakry–Émery Ricci curvature

In this paper, inspired by Brendle (Comm. Pure Appl. Math. 76 (2023), 2192) and Johne (arXiv:2103.08496, 2021), we prove a Sobolev inequality on manifolds with density and asymptotically nonnegative Bakry–Émery Ricci curvature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信