有限域上随机矩阵高迹的等分布与高导体特征和的消除

IF 0.8 3区 数学 Q2 MATHEMATICS
Ofir Gorodetsky, Valeriya Kovaleva
{"title":"有限域上随机矩阵高迹的等分布与高导体特征和的消除","authors":"Ofir Gorodetsky,&nbsp;Valeriya Kovaleva","doi":"10.1112/blms.13057","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>g</mi>\n <annotation>$g$</annotation>\n </semantics></math> be a random matrix distributed according to uniform probability measure on the finite general linear group <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>GL</mi>\n <mi>n</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>F</mi>\n <mi>q</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathrm{GL}_n(\\mathbb {F}_q)$</annotation>\n </semantics></math>. We show that <span></span><math>\n <semantics>\n <mrow>\n <mi>Tr</mi>\n <mo>(</mo>\n <msup>\n <mi>g</mi>\n <mi>k</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathrm{Tr}(g^k)$</annotation>\n </semantics></math> equidistributes on <span></span><math>\n <semantics>\n <msub>\n <mi>F</mi>\n <mi>q</mi>\n </msub>\n <annotation>$\\mathbb {F}_q$</annotation>\n </semantics></math> as <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>→</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$n \\rightarrow \\infty$</annotation>\n </semantics></math> as long as <span></span><math>\n <semantics>\n <mrow>\n <mi>log</mi>\n <mi>k</mi>\n <mo>=</mo>\n <mi>o</mi>\n <mo>(</mo>\n <msup>\n <mi>n</mi>\n <mn>2</mn>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>$\\log k=o(n^2)$</annotation>\n </semantics></math> and that this range is sharp. We also show that nontrivial linear combinations of <span></span><math>\n <semantics>\n <mrow>\n <mi>Tr</mi>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>g</mi>\n <mn>1</mn>\n </msup>\n <mo>)</mo>\n </mrow>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>,</mo>\n <mi>Tr</mi>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>g</mi>\n <mi>k</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathrm{Tr}(g^1),\\ldots, \\mathrm{Tr}(g^k)$</annotation>\n </semantics></math> equidistribute as long as <span></span><math>\n <semantics>\n <mrow>\n <mi>log</mi>\n <mi>k</mi>\n <mo>=</mo>\n <mi>o</mi>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\log k =o(n)$</annotation>\n </semantics></math> and this range is sharp as well. Previously equidistribution of either a single trace or a linear combination of traces was only known for <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>⩽</mo>\n <msub>\n <mi>c</mi>\n <mi>q</mi>\n </msub>\n <mi>n</mi>\n </mrow>\n <annotation>$k \\leqslant c_q n$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <msub>\n <mi>c</mi>\n <mi>q</mi>\n </msub>\n <annotation>$c_q$</annotation>\n </semantics></math> depends on <span></span><math>\n <semantics>\n <mi>q</mi>\n <annotation>$q$</annotation>\n </semantics></math>, due to work of the first author and Rodgers. We reduce the problem to exhibiting cancellation in certain short character sums in function fields. For the equidistribution of <span></span><math>\n <semantics>\n <mrow>\n <mi>Tr</mi>\n <mo>(</mo>\n <msup>\n <mi>g</mi>\n <mi>k</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathrm{Tr}(g^k)$</annotation>\n </semantics></math>, we end up showing that certain <i>explicit</i> character sums modulo <span></span><math>\n <semantics>\n <msup>\n <mi>T</mi>\n <mrow>\n <mi>k</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <annotation>$T^{k+1}$</annotation>\n </semantics></math> exhibit cancellation when averaged over monic polynomials of degree <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> in <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>F</mi>\n <mi>q</mi>\n </msub>\n <mrow>\n <mo>[</mo>\n <mi>T</mi>\n <mo>]</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathbb {F}_q[T]$</annotation>\n </semantics></math> as long as <span></span><math>\n <semantics>\n <mrow>\n <mi>log</mi>\n <mi>k</mi>\n <mo>=</mo>\n <mi>o</mi>\n <mo>(</mo>\n <msup>\n <mi>n</mi>\n <mn>2</mn>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>$\\log k = o(n^2)$</annotation>\n </semantics></math>. This goes far beyond the classical range <span></span><math>\n <semantics>\n <mrow>\n <mi>log</mi>\n <mi>k</mi>\n <mo>=</mo>\n <mi>o</mi>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\log k =o(n)$</annotation>\n </semantics></math> due to Montgomery and Vaughan. To study these sums, we build on the argument of Montgomery and Vaughan but exploit additional symmetry present in the considered sums.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 7","pages":"2315-2337"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13057","citationCount":"0","resultStr":"{\"title\":\"Equidistribution of high traces of random matrices over finite fields and cancellation in character sums of high conductor\",\"authors\":\"Ofir Gorodetsky,&nbsp;Valeriya Kovaleva\",\"doi\":\"10.1112/blms.13057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mi>g</mi>\\n <annotation>$g$</annotation>\\n </semantics></math> be a random matrix distributed according to uniform probability measure on the finite general linear group <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>GL</mi>\\n <mi>n</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>F</mi>\\n <mi>q</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathrm{GL}_n(\\\\mathbb {F}_q)$</annotation>\\n </semantics></math>. We show that <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Tr</mi>\\n <mo>(</mo>\\n <msup>\\n <mi>g</mi>\\n <mi>k</mi>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\mathrm{Tr}(g^k)$</annotation>\\n </semantics></math> equidistributes on <span></span><math>\\n <semantics>\\n <msub>\\n <mi>F</mi>\\n <mi>q</mi>\\n </msub>\\n <annotation>$\\\\mathbb {F}_q$</annotation>\\n </semantics></math> as <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>→</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$n \\\\rightarrow \\\\infty$</annotation>\\n </semantics></math> as long as <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>log</mi>\\n <mi>k</mi>\\n <mo>=</mo>\\n <mi>o</mi>\\n <mo>(</mo>\\n <msup>\\n <mi>n</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\log k=o(n^2)$</annotation>\\n </semantics></math> and that this range is sharp. We also show that nontrivial linear combinations of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Tr</mi>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>g</mi>\\n <mn>1</mn>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n <mo>,</mo>\\n <mtext>…</mtext>\\n <mo>,</mo>\\n <mi>Tr</mi>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>g</mi>\\n <mi>k</mi>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathrm{Tr}(g^1),\\\\ldots, \\\\mathrm{Tr}(g^k)$</annotation>\\n </semantics></math> equidistribute as long as <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>log</mi>\\n <mi>k</mi>\\n <mo>=</mo>\\n <mi>o</mi>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\log k =o(n)$</annotation>\\n </semantics></math> and this range is sharp as well. Previously equidistribution of either a single trace or a linear combination of traces was only known for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>⩽</mo>\\n <msub>\\n <mi>c</mi>\\n <mi>q</mi>\\n </msub>\\n <mi>n</mi>\\n </mrow>\\n <annotation>$k \\\\leqslant c_q n$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <msub>\\n <mi>c</mi>\\n <mi>q</mi>\\n </msub>\\n <annotation>$c_q$</annotation>\\n </semantics></math> depends on <span></span><math>\\n <semantics>\\n <mi>q</mi>\\n <annotation>$q$</annotation>\\n </semantics></math>, due to work of the first author and Rodgers. We reduce the problem to exhibiting cancellation in certain short character sums in function fields. For the equidistribution of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Tr</mi>\\n <mo>(</mo>\\n <msup>\\n <mi>g</mi>\\n <mi>k</mi>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\mathrm{Tr}(g^k)$</annotation>\\n </semantics></math>, we end up showing that certain <i>explicit</i> character sums modulo <span></span><math>\\n <semantics>\\n <msup>\\n <mi>T</mi>\\n <mrow>\\n <mi>k</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <annotation>$T^{k+1}$</annotation>\\n </semantics></math> exhibit cancellation when averaged over monic polynomials of degree <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math> in <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>F</mi>\\n <mi>q</mi>\\n </msub>\\n <mrow>\\n <mo>[</mo>\\n <mi>T</mi>\\n <mo>]</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathbb {F}_q[T]$</annotation>\\n </semantics></math> as long as <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>log</mi>\\n <mi>k</mi>\\n <mo>=</mo>\\n <mi>o</mi>\\n <mo>(</mo>\\n <msup>\\n <mi>n</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\log k = o(n^2)$</annotation>\\n </semantics></math>. This goes far beyond the classical range <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>log</mi>\\n <mi>k</mi>\\n <mo>=</mo>\\n <mi>o</mi>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\log k =o(n)$</annotation>\\n </semantics></math> due to Montgomery and Vaughan. To study these sums, we build on the argument of Montgomery and Vaughan but exploit additional symmetry present in the considered sums.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 7\",\"pages\":\"2315-2337\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13057\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13057\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13057","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 g $g$ 是一个在有限一般线性群 GL n ( F q ) $\mathrm{GL}_n(\mathbb {F}_q)$ 上按均匀概率分布的随机矩阵。我们证明,只要 log k = o ( n 2 ) $\log k=o(n^2)$ ,Tr ( g k ) $\mathrm{Tr}(g^k)$ 在 n →∞ $n \rightarrow \infty$ 时等分布于 F q $\mathbb {F}_q$ 上,并且这个范围是尖锐的。我们还证明,Tr ( g 1 ) , ... , Tr ( g k ) $\mathrm{Tr}(g^1),\ldots, \mathrm{Tr}(g^k)$只要 log k = o ( n ) $\log k =o(n)$就会等分布,而且这个范围也是尖锐的。在此之前,由于第一作者和罗杰斯的研究,单个迹线或迹线线性组合的等分布只适用于 k ⩽ c q n $k \leqslant c_q n$,其中 c q $c_q$ 取决于 q $q$。我们将问题简化为在函数场中的某些短字符和中显示取消。对于 Tr ( g k ) $\mathrm{Tr}(g^k)$ 的等差数列,我们最终证明,只要 log k = o ( n 2 ) $\log k = o(n^2)$ ,在对 F q [ T ] $\mathbb {F}_q[T]$ 中 n $n$ 阶的单项式求平均数时,某些显式特征和 modulo T k + 1 $T^{k+1}$ 会表现出取消。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Equidistribution of high traces of random matrices over finite fields and cancellation in character sums of high conductor

Let g $g$ be a random matrix distributed according to uniform probability measure on the finite general linear group GL n ( F q ) $\mathrm{GL}_n(\mathbb {F}_q)$ . We show that Tr ( g k ) $\mathrm{Tr}(g^k)$ equidistributes on F q $\mathbb {F}_q$ as n $n \rightarrow \infty$ as long as log k = o ( n 2 ) $\log k=o(n^2)$ and that this range is sharp. We also show that nontrivial linear combinations of Tr ( g 1 ) , , Tr ( g k ) $\mathrm{Tr}(g^1),\ldots, \mathrm{Tr}(g^k)$ equidistribute as long as log k = o ( n ) $\log k =o(n)$ and this range is sharp as well. Previously equidistribution of either a single trace or a linear combination of traces was only known for k c q n $k \leqslant c_q n$ , where c q $c_q$ depends on q $q$ , due to work of the first author and Rodgers. We reduce the problem to exhibiting cancellation in certain short character sums in function fields. For the equidistribution of Tr ( g k ) $\mathrm{Tr}(g^k)$ , we end up showing that certain explicit character sums modulo T k + 1 $T^{k+1}$ exhibit cancellation when averaged over monic polynomials of degree n $n$ in F q [ T ] $\mathbb {F}_q[T]$ as long as log k = o ( n 2 ) $\log k = o(n^2)$ . This goes far beyond the classical range log k = o ( n ) $\log k =o(n)$ due to Montgomery and Vaughan. To study these sums, we build on the argument of Montgomery and Vaughan but exploit additional symmetry present in the considered sums.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信