{"title":"白细胞介素-6 家族细胞因子在癌症恶病质中的作用","authors":"Samet Agca, Serkan Kir","doi":"10.1111/febs.17224","DOIUrl":null,"url":null,"abstract":"<p>Cachexia is a wasting syndrome that manifests in more than half of all cancer patients. Cancer-associated cachexia negatively influences the survival of patients and their quality of life. It is characterized by a rapid loss of adipose and skeletal muscle tissues, which is partly mediated by inflammatory cytokines. Here, we explored the crucial roles of interleukin-6 (IL-6) family cytokines, including IL-6, leukemia inhibitory factor, and oncostatin M, in the development of cancer cachexia. These cytokines have been shown to exacerbate cachexia by promoting the wasting of adipose and muscle tissues, activating mechanisms that enhance lipolysis and proteolysis. Overlapping effects of the IL-6 family cytokines depend on janus kinase/signal transducer and activator of transcription 3 signaling. We argue that the blockade of these cytokine pathways individually may fail due to redundancy and future therapeutic approaches should target common downstream elements to yield effective clinical outcomes.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/febs.17224","citationCount":"0","resultStr":"{\"title\":\"The role of interleukin-6 family cytokines in cancer cachexia\",\"authors\":\"Samet Agca, Serkan Kir\",\"doi\":\"10.1111/febs.17224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cachexia is a wasting syndrome that manifests in more than half of all cancer patients. Cancer-associated cachexia negatively influences the survival of patients and their quality of life. It is characterized by a rapid loss of adipose and skeletal muscle tissues, which is partly mediated by inflammatory cytokines. Here, we explored the crucial roles of interleukin-6 (IL-6) family cytokines, including IL-6, leukemia inhibitory factor, and oncostatin M, in the development of cancer cachexia. These cytokines have been shown to exacerbate cachexia by promoting the wasting of adipose and muscle tissues, activating mechanisms that enhance lipolysis and proteolysis. Overlapping effects of the IL-6 family cytokines depend on janus kinase/signal transducer and activator of transcription 3 signaling. We argue that the blockade of these cytokine pathways individually may fail due to redundancy and future therapeutic approaches should target common downstream elements to yield effective clinical outcomes.</p>\",\"PeriodicalId\":94226,\"journal\":{\"name\":\"The FEBS journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/febs.17224\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The FEBS journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/febs.17224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/febs.17224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The role of interleukin-6 family cytokines in cancer cachexia
Cachexia is a wasting syndrome that manifests in more than half of all cancer patients. Cancer-associated cachexia negatively influences the survival of patients and their quality of life. It is characterized by a rapid loss of adipose and skeletal muscle tissues, which is partly mediated by inflammatory cytokines. Here, we explored the crucial roles of interleukin-6 (IL-6) family cytokines, including IL-6, leukemia inhibitory factor, and oncostatin M, in the development of cancer cachexia. These cytokines have been shown to exacerbate cachexia by promoting the wasting of adipose and muscle tissues, activating mechanisms that enhance lipolysis and proteolysis. Overlapping effects of the IL-6 family cytokines depend on janus kinase/signal transducer and activator of transcription 3 signaling. We argue that the blockade of these cytokine pathways individually may fail due to redundancy and future therapeutic approaches should target common downstream elements to yield effective clinical outcomes.