开发比较生理学家的 omic 工具包。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Daniel M. Ripley , Terence Garner , Adam Stevens
{"title":"开发比较生理学家的 omic 工具包。","authors":"Daniel M. Ripley ,&nbsp;Terence Garner ,&nbsp;Adam Stevens","doi":"10.1016/j.cbd.2024.101287","DOIUrl":null,"url":null,"abstract":"<div><p>Typical ‘omic analyses reduce complex biological systems to simple lists of supposedly independent variables, failing to account for changes in the wider transcriptional landscape. In this commentary, we discuss the utility of network approaches for incorporating this wider context into the study of physiological phenomena. We highlight opportunities to build on traditional network tools by utilising cutting-edge techniques to account for higher order interactions (i.e. beyond pairwise associations) within datasets, allowing for more accurate models of complex ‘omic systems. Finally, we show examples of previous works utilising network approaches to gain additional insight into their organisms of interest. As ‘omics grow in both their popularity and breadth of application, so does the requirement for flexible analytical tools capable of interpreting and synthesising complex datasets.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1744117X2400100X/pdfft?md5=bef31ac6d5e4dfab2c83fb25489e26aa&pid=1-s2.0-S1744117X2400100X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Developing the ‘omic toolkit of comparative physiologists\",\"authors\":\"Daniel M. Ripley ,&nbsp;Terence Garner ,&nbsp;Adam Stevens\",\"doi\":\"10.1016/j.cbd.2024.101287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Typical ‘omic analyses reduce complex biological systems to simple lists of supposedly independent variables, failing to account for changes in the wider transcriptional landscape. In this commentary, we discuss the utility of network approaches for incorporating this wider context into the study of physiological phenomena. We highlight opportunities to build on traditional network tools by utilising cutting-edge techniques to account for higher order interactions (i.e. beyond pairwise associations) within datasets, allowing for more accurate models of complex ‘omic systems. Finally, we show examples of previous works utilising network approaches to gain additional insight into their organisms of interest. As ‘omics grow in both their popularity and breadth of application, so does the requirement for flexible analytical tools capable of interpreting and synthesising complex datasets.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1744117X2400100X/pdfft?md5=bef31ac6d5e4dfab2c83fb25489e26aa&pid=1-s2.0-S1744117X2400100X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1744117X2400100X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1744117X2400100X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

典型的'omic'分析将复杂的生物系统简化为简单的所谓独立变量列表,无法解释更广泛的转录格局的变化。在这篇评论中,我们将讨论网络方法在将更广泛的背景纳入生理现象研究中的实用性。我们强调了在传统网络工具基础上利用前沿技术解释数据集中高阶相互作用(即超越成对关联)的机会,从而为复杂的 "omic "系统建立更准确的模型。最后,我们将举例说明以往利用网络方法深入了解相关生物体的研究成果。随着'omics'的普及和应用范围的扩大,对能够解释和综合复杂数据集的灵活分析工具的要求也越来越高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Developing the ‘omic toolkit of comparative physiologists

Developing the ‘omic toolkit of comparative physiologists

Typical ‘omic analyses reduce complex biological systems to simple lists of supposedly independent variables, failing to account for changes in the wider transcriptional landscape. In this commentary, we discuss the utility of network approaches for incorporating this wider context into the study of physiological phenomena. We highlight opportunities to build on traditional network tools by utilising cutting-edge techniques to account for higher order interactions (i.e. beyond pairwise associations) within datasets, allowing for more accurate models of complex ‘omic systems. Finally, we show examples of previous works utilising network approaches to gain additional insight into their organisms of interest. As ‘omics grow in both their popularity and breadth of application, so does the requirement for flexible analytical tools capable of interpreting and synthesising complex datasets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信