细胞外微囊与线粒体:争夺心血管再生医学的头把交椅。

IF 4.5 3区 医学 Q2 CELL & TISSUE ENGINEERING
Stem Cell Reviews and Reports Pub Date : 2024-10-01 Epub Date: 2024-07-08 DOI:10.1007/s12015-024-10758-8
David M Smadja
{"title":"细胞外微囊与线粒体:争夺心血管再生医学的头把交椅。","authors":"David M Smadja","doi":"10.1007/s12015-024-10758-8","DOIUrl":null,"url":null,"abstract":"<p><p>Regenerative medicine aims to restore, replace, and regenerate human cells, tissues, and organs. Despite significant advancements, many cell therapy trials for cardiovascular diseases face challenges like cell survival and immune compatibility, with benefits largely stemming from paracrine effects. Two promising therapeutic tools have been recently emerged in cardiovascular diseases: extracellular vesicles (EVs) and mitochondrial transfer. Concerning EVs, the first pivotal study with EV-enriched secretome derived from cardiovascular progenitor cells has been done treating heart failure. This first in man demonstrated the safety and feasibility of repeated intravenous infusions and highlighted significant clinical improvements, including enhanced cardiac function and reduced symptoms in heart failure patients. The second study uncovered a novel mechanism of endothelial regeneration through mitochondrial transfer via tunneling nanotubes (TNTs). This research showed that mesenchymal stromal cells (MSCs) transfer mitochondria to endothelial cells, significantly enhancing their bioenergetics and vessel-forming capabilities. This mitochondrial transfer was crucial for endothelial cell engraftment and function, offering a new strategy for vascular regeneration without the need for additional cell types. Combining EV and mitochondrial strategies presents new clinical opportunities. These approaches could revolutionize regenerative medicine, offering new hope for treating cardiovascular and other degenerative diseases. Continued research and clinical trials will be crucial in optimizing these therapies, potentially leading to personalized medicine approaches that enhance patient outcomes.</p>","PeriodicalId":21955,"journal":{"name":"Stem Cell Reviews and Reports","volume":" ","pages":"1813-1818"},"PeriodicalIF":4.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extracellular Microvesicles vs. Mitochondria: Competing for the Top Spot in Cardiovascular Regenerative Medicine.\",\"authors\":\"David M Smadja\",\"doi\":\"10.1007/s12015-024-10758-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Regenerative medicine aims to restore, replace, and regenerate human cells, tissues, and organs. Despite significant advancements, many cell therapy trials for cardiovascular diseases face challenges like cell survival and immune compatibility, with benefits largely stemming from paracrine effects. Two promising therapeutic tools have been recently emerged in cardiovascular diseases: extracellular vesicles (EVs) and mitochondrial transfer. Concerning EVs, the first pivotal study with EV-enriched secretome derived from cardiovascular progenitor cells has been done treating heart failure. This first in man demonstrated the safety and feasibility of repeated intravenous infusions and highlighted significant clinical improvements, including enhanced cardiac function and reduced symptoms in heart failure patients. The second study uncovered a novel mechanism of endothelial regeneration through mitochondrial transfer via tunneling nanotubes (TNTs). This research showed that mesenchymal stromal cells (MSCs) transfer mitochondria to endothelial cells, significantly enhancing their bioenergetics and vessel-forming capabilities. This mitochondrial transfer was crucial for endothelial cell engraftment and function, offering a new strategy for vascular regeneration without the need for additional cell types. Combining EV and mitochondrial strategies presents new clinical opportunities. These approaches could revolutionize regenerative medicine, offering new hope for treating cardiovascular and other degenerative diseases. Continued research and clinical trials will be crucial in optimizing these therapies, potentially leading to personalized medicine approaches that enhance patient outcomes.</p>\",\"PeriodicalId\":21955,\"journal\":{\"name\":\"Stem Cell Reviews and Reports\",\"volume\":\" \",\"pages\":\"1813-1818\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem Cell Reviews and Reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12015-024-10758-8\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Reviews and Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12015-024-10758-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

再生医学旨在恢复、替代和再生人体细胞、组织和器官。尽管取得了重大进展,但许多针对心血管疾病的细胞疗法试验都面临着细胞存活和免疫相容性等挑战,其益处主要来自旁分泌效应。最近,心血管疾病领域出现了两种前景广阔的治疗工具:细胞外囊泡(EVs)和线粒体转移。关于细胞外囊泡,第一项使用心血管祖细胞提取的细胞外囊泡富集分泌物治疗心力衰竭的关键研究已经完成。这项首次人体试验证明了反复静脉注射的安全性和可行性,并突出显示了显著的临床改善,包括增强心功能和减轻心衰患者的症状。第二项研究通过隧道纳米管(TNT)的线粒体转移,发现了一种新的内皮再生机制。这项研究表明,间充质基质细胞(MSCs)能将线粒体转移到内皮细胞,从而显著增强内皮细胞的生物能和血管形成能力。这种线粒体转移对内皮细胞的移植和功能至关重要,为血管再生提供了一种新策略,而不需要额外的细胞类型。EV和线粒体策略的结合带来了新的临床机遇。这些方法可能会彻底改变再生医学,为治疗心血管疾病和其他退行性疾病带来新希望。持续的研究和临床试验对优化这些疗法至关重要,有可能导致个性化的医疗方法,提高患者的治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Extracellular Microvesicles vs. Mitochondria: Competing for the Top Spot in Cardiovascular Regenerative Medicine.

Extracellular Microvesicles vs. Mitochondria: Competing for the Top Spot in Cardiovascular Regenerative Medicine.

Regenerative medicine aims to restore, replace, and regenerate human cells, tissues, and organs. Despite significant advancements, many cell therapy trials for cardiovascular diseases face challenges like cell survival and immune compatibility, with benefits largely stemming from paracrine effects. Two promising therapeutic tools have been recently emerged in cardiovascular diseases: extracellular vesicles (EVs) and mitochondrial transfer. Concerning EVs, the first pivotal study with EV-enriched secretome derived from cardiovascular progenitor cells has been done treating heart failure. This first in man demonstrated the safety and feasibility of repeated intravenous infusions and highlighted significant clinical improvements, including enhanced cardiac function and reduced symptoms in heart failure patients. The second study uncovered a novel mechanism of endothelial regeneration through mitochondrial transfer via tunneling nanotubes (TNTs). This research showed that mesenchymal stromal cells (MSCs) transfer mitochondria to endothelial cells, significantly enhancing their bioenergetics and vessel-forming capabilities. This mitochondrial transfer was crucial for endothelial cell engraftment and function, offering a new strategy for vascular regeneration without the need for additional cell types. Combining EV and mitochondrial strategies presents new clinical opportunities. These approaches could revolutionize regenerative medicine, offering new hope for treating cardiovascular and other degenerative diseases. Continued research and clinical trials will be crucial in optimizing these therapies, potentially leading to personalized medicine approaches that enhance patient outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stem Cell Reviews and Reports
Stem Cell Reviews and Reports 医学-细胞生物学
CiteScore
9.30
自引率
4.20%
发文量
0
审稿时长
3 months
期刊介绍: The purpose of Stem Cell Reviews and Reports is to cover contemporary and emerging areas in stem cell research and regenerative medicine. The journal will consider for publication: i) solicited or unsolicited reviews of topical areas of stem cell biology that highlight, critique and synthesize recent important findings in the field. ii) full length and short reports presenting original experimental work. iii) translational stem cell studies describing results of clinical trials using stem cells as therapeutics. iv) papers focused on diseases of stem cells. v) hypothesis and commentary articles as opinion-based pieces in which authors can propose a new theory, interpretation of a controversial area in stem cell biology, or a stem cell biology question or paradigm. These articles contain more speculation than reviews, but they should be based on solid rationale. vi) protocols as peer-reviewed procedures that provide step-by-step descriptions, outlined in sufficient detail, so that both experts and novices can apply them to their own research. vii) letters to the editor and correspondence. In order to facilitate this exchange of scientific information and exciting novel ideas, the journal has created five thematic sections, focusing on: i) the role of adult stem cells in tissue regeneration; ii) progress in research on induced pluripotent stem cells, embryonic stem cells and mechanism governing embryogenesis and tissue development; iii) the role of microenvironment and extracellular microvesicles in directing the fate of stem cells; iv) mechanisms of stem cell trafficking, stem cell mobilization and homing with special emphasis on hematopoiesis; v) the role of stem cells in aging processes and cancerogenesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信