{"title":"接受免疫检查点抑制剂治疗的晚期非小细胞肺癌患者预后的δ-放射特征预测价值。","authors":"Xiaoyu Han, Yujin Wang, Xi Jia, Yuting Zheng, Chengyu Ding, Xiaohui Zhang, Kailu Zhang, Yunkun Cao, Yumin Li, Liming Xia, Chuansheng Zheng, Jing Huang, Heshui Shi","doi":"10.21037/tlcr-24-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>No robust predictive biomarkers exist to identify non-small cell lung cancer (NSCLC) patients likely to benefit from immune checkpoint inhibitor (ICI) therapies. The aim of this study was to explore the role of delta-radiomics features in predicting the clinical outcomes of patients with advanced NSCLC who received ICI therapy.</p><p><strong>Methods: </strong>Data of 179 patients with advanced NSCLC (stages IIIB-IV) from two institutions (Database 1 =133; Database 2 =46) were retrospectively analyzed. Patients in the Database 1 were randomly assigned into training and validation dataset, with a ratio of 8:2. Patients in Database 2 were allocated into testing dataset. Features were selected from computed tomography (CT) images before and 6-8 weeks after ICI therapy. For each lesion, a total of 1,037 radiomic features were extracted. Lowly reliable [intraclass correlation coefficient (ICC) <0.8] and redundant (r>0.8) features were excluded. The delta-radiomics features were defined as the relative net change of radiomics features between two time points. Prognostic models for progression-free survival (PFS) and overall survival (OS) were established using the multivariate Cox regression based on selected delta-radiomics features. A clinical model and a pre-treatment radiomics model were established as well.</p><p><strong>Results: </strong>The median PFS (after therapy) was 7.0 [interquartile range (IQR): 3.4, 9.1] (range, 1.4-13.2) months. To predict PFS, the model established based on the five most contributing delta-radiomics features yielded Harrell's concordance index (C-index) values of 0.708, 0.688, and 0.603 in the training, validation, and testing databases, respectively. The median survival time was 12 (IQR: 8.7, 15.8) (range, 2.9-23.3) months. To predict OS, a promising prognostic performance was confirmed with the corresponding C-index values of 0.810, 0.762, and 0.697 in the three datasets based on the seven most contributing delta-radiomics features, respectively. Furthermore, compared with clinical and pre-treatment radiomics models, the delta-radiomics model had the highest area under the curve (AUC) value and the best patients' stratification ability.</p><p><strong>Conclusions: </strong>The delta-radiomics model showed a good performance in predicting therapeutic outcomes in advanced NSCLC patients undergoing ICI therapy. It provides a higher predictive value than clinical and the pre-treatment radiomics models.</p>","PeriodicalId":23271,"journal":{"name":"Translational lung cancer research","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11225045/pdf/","citationCount":"0","resultStr":"{\"title\":\"Predictive value of delta-radiomic features for prognosis of advanced non-small cell lung cancer patients undergoing immune checkpoint inhibitor therapy.\",\"authors\":\"Xiaoyu Han, Yujin Wang, Xi Jia, Yuting Zheng, Chengyu Ding, Xiaohui Zhang, Kailu Zhang, Yunkun Cao, Yumin Li, Liming Xia, Chuansheng Zheng, Jing Huang, Heshui Shi\",\"doi\":\"10.21037/tlcr-24-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>No robust predictive biomarkers exist to identify non-small cell lung cancer (NSCLC) patients likely to benefit from immune checkpoint inhibitor (ICI) therapies. The aim of this study was to explore the role of delta-radiomics features in predicting the clinical outcomes of patients with advanced NSCLC who received ICI therapy.</p><p><strong>Methods: </strong>Data of 179 patients with advanced NSCLC (stages IIIB-IV) from two institutions (Database 1 =133; Database 2 =46) were retrospectively analyzed. Patients in the Database 1 were randomly assigned into training and validation dataset, with a ratio of 8:2. Patients in Database 2 were allocated into testing dataset. Features were selected from computed tomography (CT) images before and 6-8 weeks after ICI therapy. For each lesion, a total of 1,037 radiomic features were extracted. Lowly reliable [intraclass correlation coefficient (ICC) <0.8] and redundant (r>0.8) features were excluded. The delta-radiomics features were defined as the relative net change of radiomics features between two time points. Prognostic models for progression-free survival (PFS) and overall survival (OS) were established using the multivariate Cox regression based on selected delta-radiomics features. A clinical model and a pre-treatment radiomics model were established as well.</p><p><strong>Results: </strong>The median PFS (after therapy) was 7.0 [interquartile range (IQR): 3.4, 9.1] (range, 1.4-13.2) months. To predict PFS, the model established based on the five most contributing delta-radiomics features yielded Harrell's concordance index (C-index) values of 0.708, 0.688, and 0.603 in the training, validation, and testing databases, respectively. The median survival time was 12 (IQR: 8.7, 15.8) (range, 2.9-23.3) months. To predict OS, a promising prognostic performance was confirmed with the corresponding C-index values of 0.810, 0.762, and 0.697 in the three datasets based on the seven most contributing delta-radiomics features, respectively. Furthermore, compared with clinical and pre-treatment radiomics models, the delta-radiomics model had the highest area under the curve (AUC) value and the best patients' stratification ability.</p><p><strong>Conclusions: </strong>The delta-radiomics model showed a good performance in predicting therapeutic outcomes in advanced NSCLC patients undergoing ICI therapy. It provides a higher predictive value than clinical and the pre-treatment radiomics models.</p>\",\"PeriodicalId\":23271,\"journal\":{\"name\":\"Translational lung cancer research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11225045/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational lung cancer research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.21037/tlcr-24-7\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational lung cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21037/tlcr-24-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
Predictive value of delta-radiomic features for prognosis of advanced non-small cell lung cancer patients undergoing immune checkpoint inhibitor therapy.
Background: No robust predictive biomarkers exist to identify non-small cell lung cancer (NSCLC) patients likely to benefit from immune checkpoint inhibitor (ICI) therapies. The aim of this study was to explore the role of delta-radiomics features in predicting the clinical outcomes of patients with advanced NSCLC who received ICI therapy.
Methods: Data of 179 patients with advanced NSCLC (stages IIIB-IV) from two institutions (Database 1 =133; Database 2 =46) were retrospectively analyzed. Patients in the Database 1 were randomly assigned into training and validation dataset, with a ratio of 8:2. Patients in Database 2 were allocated into testing dataset. Features were selected from computed tomography (CT) images before and 6-8 weeks after ICI therapy. For each lesion, a total of 1,037 radiomic features were extracted. Lowly reliable [intraclass correlation coefficient (ICC) <0.8] and redundant (r>0.8) features were excluded. The delta-radiomics features were defined as the relative net change of radiomics features between two time points. Prognostic models for progression-free survival (PFS) and overall survival (OS) were established using the multivariate Cox regression based on selected delta-radiomics features. A clinical model and a pre-treatment radiomics model were established as well.
Results: The median PFS (after therapy) was 7.0 [interquartile range (IQR): 3.4, 9.1] (range, 1.4-13.2) months. To predict PFS, the model established based on the five most contributing delta-radiomics features yielded Harrell's concordance index (C-index) values of 0.708, 0.688, and 0.603 in the training, validation, and testing databases, respectively. The median survival time was 12 (IQR: 8.7, 15.8) (range, 2.9-23.3) months. To predict OS, a promising prognostic performance was confirmed with the corresponding C-index values of 0.810, 0.762, and 0.697 in the three datasets based on the seven most contributing delta-radiomics features, respectively. Furthermore, compared with clinical and pre-treatment radiomics models, the delta-radiomics model had the highest area under the curve (AUC) value and the best patients' stratification ability.
Conclusions: The delta-radiomics model showed a good performance in predicting therapeutic outcomes in advanced NSCLC patients undergoing ICI therapy. It provides a higher predictive value than clinical and the pre-treatment radiomics models.
期刊介绍:
Translational Lung Cancer Research(TLCR, Transl Lung Cancer Res, Print ISSN 2218-6751; Online ISSN 2226-4477) is an international, peer-reviewed, open-access journal, which was founded in March 2012. TLCR is indexed by PubMed/PubMed Central and the Chemical Abstracts Service (CAS) Databases. It is published quarterly the first year, and published bimonthly since February 2013. It provides practical up-to-date information on prevention, early detection, diagnosis, and treatment of lung cancer. Specific areas of its interest include, but not limited to, multimodality therapy, markers, imaging, tumor biology, pathology, chemoprevention, and technical advances related to lung cancer.