Yiming He, Lin Huang, Jiajun Deng, Yifan Zhong, Tao Chen, Yunlang She, Lei Jiang, Deping Zhao, Dong Xie, Gening Jiang, Stefano Bongiolatti, Mara B Antonoff, René Horsleben Petersen, Chang Chen
{"title":"预测非小细胞肺癌袖状肺叶切除术后的并发症风险。","authors":"Yiming He, Lin Huang, Jiajun Deng, Yifan Zhong, Tao Chen, Yunlang She, Lei Jiang, Deping Zhao, Dong Xie, Gening Jiang, Stefano Bongiolatti, Mara B Antonoff, René Horsleben Petersen, Chang Chen","doi":"10.21037/tlcr-24-325","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Sleeve lobectomy is a challenging procedure with a high risk of postoperative complications. To facilitate surgical decision-making and optimize perioperative treatment, we developed risk stratification models to quantify the probability of postoperative complications after sleeve lobectomy.</p><p><strong>Methods: </strong>We retrospectively analyzed the clinical features of 691 non-small cell lung cancer (NSCLC) patients who underwent sleeve lobectomy between July 2016 and December 2019. Logistic regression models were trained and validated in the cohort to predict overall complications, major complications, and specific minor complications. The impact of specific complications in prognostic stratification was explored via the Kaplan-Meier method.</p><p><strong>Results: </strong>Of 691 included patients, 232 (33.5%) developed complications, including 35 (5.1%) and 197 (28.5%) patients with major and minor complications, respectively. The models showed robust discrimination, yielding an area under the receiver operating characteristic (ROC) curve (AUC) of 0.853 [95% confidence interval (CI): 0.705-0.885] for predicting overall postoperative complication risk and 0.751 (95% CI: 0.727-0.762) specifically for major complication risks. Models predicting minor complications also achieved good performance, with AUCs ranging from 0.78 to 0.89. Survival analyses revealed a significant association between postoperative complications and poor prognosis.</p><p><strong>Conclusions: </strong>Risk stratification models could accurately predict the probability and severity of complications in NSCLC patients following sleeve lobectomy, which may inform clinical decision-making for future patients.</p>","PeriodicalId":23271,"journal":{"name":"Translational lung cancer research","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11225058/pdf/","citationCount":"0","resultStr":"{\"title\":\"Predicting complication risks after sleeve lobectomy for non-small cell lung cancer.\",\"authors\":\"Yiming He, Lin Huang, Jiajun Deng, Yifan Zhong, Tao Chen, Yunlang She, Lei Jiang, Deping Zhao, Dong Xie, Gening Jiang, Stefano Bongiolatti, Mara B Antonoff, René Horsleben Petersen, Chang Chen\",\"doi\":\"10.21037/tlcr-24-325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Sleeve lobectomy is a challenging procedure with a high risk of postoperative complications. To facilitate surgical decision-making and optimize perioperative treatment, we developed risk stratification models to quantify the probability of postoperative complications after sleeve lobectomy.</p><p><strong>Methods: </strong>We retrospectively analyzed the clinical features of 691 non-small cell lung cancer (NSCLC) patients who underwent sleeve lobectomy between July 2016 and December 2019. Logistic regression models were trained and validated in the cohort to predict overall complications, major complications, and specific minor complications. The impact of specific complications in prognostic stratification was explored via the Kaplan-Meier method.</p><p><strong>Results: </strong>Of 691 included patients, 232 (33.5%) developed complications, including 35 (5.1%) and 197 (28.5%) patients with major and minor complications, respectively. The models showed robust discrimination, yielding an area under the receiver operating characteristic (ROC) curve (AUC) of 0.853 [95% confidence interval (CI): 0.705-0.885] for predicting overall postoperative complication risk and 0.751 (95% CI: 0.727-0.762) specifically for major complication risks. Models predicting minor complications also achieved good performance, with AUCs ranging from 0.78 to 0.89. Survival analyses revealed a significant association between postoperative complications and poor prognosis.</p><p><strong>Conclusions: </strong>Risk stratification models could accurately predict the probability and severity of complications in NSCLC patients following sleeve lobectomy, which may inform clinical decision-making for future patients.</p>\",\"PeriodicalId\":23271,\"journal\":{\"name\":\"Translational lung cancer research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11225058/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational lung cancer research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.21037/tlcr-24-325\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational lung cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21037/tlcr-24-325","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
Predicting complication risks after sleeve lobectomy for non-small cell lung cancer.
Background: Sleeve lobectomy is a challenging procedure with a high risk of postoperative complications. To facilitate surgical decision-making and optimize perioperative treatment, we developed risk stratification models to quantify the probability of postoperative complications after sleeve lobectomy.
Methods: We retrospectively analyzed the clinical features of 691 non-small cell lung cancer (NSCLC) patients who underwent sleeve lobectomy between July 2016 and December 2019. Logistic regression models were trained and validated in the cohort to predict overall complications, major complications, and specific minor complications. The impact of specific complications in prognostic stratification was explored via the Kaplan-Meier method.
Results: Of 691 included patients, 232 (33.5%) developed complications, including 35 (5.1%) and 197 (28.5%) patients with major and minor complications, respectively. The models showed robust discrimination, yielding an area under the receiver operating characteristic (ROC) curve (AUC) of 0.853 [95% confidence interval (CI): 0.705-0.885] for predicting overall postoperative complication risk and 0.751 (95% CI: 0.727-0.762) specifically for major complication risks. Models predicting minor complications also achieved good performance, with AUCs ranging from 0.78 to 0.89. Survival analyses revealed a significant association between postoperative complications and poor prognosis.
Conclusions: Risk stratification models could accurately predict the probability and severity of complications in NSCLC patients following sleeve lobectomy, which may inform clinical decision-making for future patients.
期刊介绍:
Translational Lung Cancer Research(TLCR, Transl Lung Cancer Res, Print ISSN 2218-6751; Online ISSN 2226-4477) is an international, peer-reviewed, open-access journal, which was founded in March 2012. TLCR is indexed by PubMed/PubMed Central and the Chemical Abstracts Service (CAS) Databases. It is published quarterly the first year, and published bimonthly since February 2013. It provides practical up-to-date information on prevention, early detection, diagnosis, and treatment of lung cancer. Specific areas of its interest include, but not limited to, multimodality therapy, markers, imaging, tumor biology, pathology, chemoprevention, and technical advances related to lung cancer.