Marko Radulović, Xingyu Li, Goran J Djuričić, Jelena Milovanović, Nataša Todorović Raković, Tijana Vujasinović, Dušan Banovac, Ksenija Kanjer
{"title":"架起组织病理学与放射组学的桥梁,预测早期乳腺癌的转移。","authors":"Marko Radulović, Xingyu Li, Goran J Djuričić, Jelena Milovanović, Nataša Todorović Raković, Tijana Vujasinović, Dušan Banovac, Ksenija Kanjer","doi":"10.1093/mam/ozae057","DOIUrl":null,"url":null,"abstract":"<p><p>Tumor histomorphology is crucial for the prognostication of breast cancer outcomes because it contains histological, cellular, and molecular tumor heterogeneity related to metastatic potential. To enhance breast cancer prognosis, we aimed to apply radiomics analysis-traditionally used in 3D scans-to 2D histopathology slides. This study tested radiomics analysis in a cohort of 92 breast tumor specimens for outcome prognosis, addressing -omics dimensionality by comparing models with moderate and high feature counts, using least absolute shrinkage and selection operator for feature selection and machine learning for prognostic modeling. In the test folds, models with radiomics features [area under the curves (AUCs) range 0.799-0.823] significantly outperformed the benchmark model, which only included clinicopathological (CP) parameters (AUC = 0.584). The moderate-dimensionality model with 11 CP + 93 radiomics features matched the performance of the highly dimensional models with 1,208 radiomics or 11 CP + 1,208 radiomics features, showing average AUCs of 0.823, 0.799, and 0.807 and accuracies of 79.8, 79.3, and 76.6%, respectively. In conclusion, our application of deep texture radiomics analysis to 2D histopathology showed strong prognostic performance with a moderate-dimensionality model, surpassing a benchmark based on standard CP parameters, indicating that this deep texture histomics approach could potentially become a valuable prognostic tool.</p>","PeriodicalId":18625,"journal":{"name":"Microscopy and Microanalysis","volume":" ","pages":"751-758"},"PeriodicalIF":2.9000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bridging Histopathology and Radiomics Toward Prognosis of Metastasis in Early Breast Cancer.\",\"authors\":\"Marko Radulović, Xingyu Li, Goran J Djuričić, Jelena Milovanović, Nataša Todorović Raković, Tijana Vujasinović, Dušan Banovac, Ksenija Kanjer\",\"doi\":\"10.1093/mam/ozae057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tumor histomorphology is crucial for the prognostication of breast cancer outcomes because it contains histological, cellular, and molecular tumor heterogeneity related to metastatic potential. To enhance breast cancer prognosis, we aimed to apply radiomics analysis-traditionally used in 3D scans-to 2D histopathology slides. This study tested radiomics analysis in a cohort of 92 breast tumor specimens for outcome prognosis, addressing -omics dimensionality by comparing models with moderate and high feature counts, using least absolute shrinkage and selection operator for feature selection and machine learning for prognostic modeling. In the test folds, models with radiomics features [area under the curves (AUCs) range 0.799-0.823] significantly outperformed the benchmark model, which only included clinicopathological (CP) parameters (AUC = 0.584). The moderate-dimensionality model with 11 CP + 93 radiomics features matched the performance of the highly dimensional models with 1,208 radiomics or 11 CP + 1,208 radiomics features, showing average AUCs of 0.823, 0.799, and 0.807 and accuracies of 79.8, 79.3, and 76.6%, respectively. In conclusion, our application of deep texture radiomics analysis to 2D histopathology showed strong prognostic performance with a moderate-dimensionality model, surpassing a benchmark based on standard CP parameters, indicating that this deep texture histomics approach could potentially become a valuable prognostic tool.</p>\",\"PeriodicalId\":18625,\"journal\":{\"name\":\"Microscopy and Microanalysis\",\"volume\":\" \",\"pages\":\"751-758\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microscopy and Microanalysis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/mam/ozae057\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy and Microanalysis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/mam/ozae057","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Bridging Histopathology and Radiomics Toward Prognosis of Metastasis in Early Breast Cancer.
Tumor histomorphology is crucial for the prognostication of breast cancer outcomes because it contains histological, cellular, and molecular tumor heterogeneity related to metastatic potential. To enhance breast cancer prognosis, we aimed to apply radiomics analysis-traditionally used in 3D scans-to 2D histopathology slides. This study tested radiomics analysis in a cohort of 92 breast tumor specimens for outcome prognosis, addressing -omics dimensionality by comparing models with moderate and high feature counts, using least absolute shrinkage and selection operator for feature selection and machine learning for prognostic modeling. In the test folds, models with radiomics features [area under the curves (AUCs) range 0.799-0.823] significantly outperformed the benchmark model, which only included clinicopathological (CP) parameters (AUC = 0.584). The moderate-dimensionality model with 11 CP + 93 radiomics features matched the performance of the highly dimensional models with 1,208 radiomics or 11 CP + 1,208 radiomics features, showing average AUCs of 0.823, 0.799, and 0.807 and accuracies of 79.8, 79.3, and 76.6%, respectively. In conclusion, our application of deep texture radiomics analysis to 2D histopathology showed strong prognostic performance with a moderate-dimensionality model, surpassing a benchmark based on standard CP parameters, indicating that this deep texture histomics approach could potentially become a valuable prognostic tool.
期刊介绍:
Microscopy and Microanalysis publishes original research papers in the fields of microscopy, imaging, and compositional analysis. This distinguished international forum is intended for microscopists in both biology and materials science. The journal provides significant articles that describe new and existing techniques and instrumentation, as well as the applications of these to the imaging and analysis of microstructure. Microscopy and Microanalysis also includes review articles, letters to the editor, and book reviews.