Dandan Mo, Youjun Qiu, Bing Tian, Xinli Liu, Yujie Chen, Guotao Zou, Chunbao Guo, Chun Deng
{"title":"在小鼠坏死性小肠结肠炎模型中,Progranulin 通过抑制 M1 巨噬细胞极化减轻肠道损伤。","authors":"Dandan Mo, Youjun Qiu, Bing Tian, Xinli Liu, Yujie Chen, Guotao Zou, Chunbao Guo, Chun Deng","doi":"10.1002/cbin.12209","DOIUrl":null,"url":null,"abstract":"<p>Neonatal necrotizing enterocolitis (NEC) is a critical digestive disorder frequently affecting premature infants. Characterized by intestinal inflammation caused by activated M1 macrophages, modulation of macrophage polarization is considered a promising therapeutic strategy for NEC. It has been demonstrated that the growth factor-like protein progranulin (PGRN), which plays roles in a number of physiological and pathological processes, can influence macrophage polarization and exhibit anti-inflammatory characteristics in a number of illnesses. However, its role in NEC is yet to be investigated. Our research showed that the levels of PGRN were markedly elevated in both human and animal models of NEC. PGRN deletion in mice worsens NEC by encouraging M1 polarization of macrophages and escalating intestinal damage and inflammation. Intravenous administration of recombinant PGRN to NEC mice showed significant survival benefits and protective effects, likely due to PGRN's ability to inhibit M1 polarization and reduce the release of pro-inflammatory factors. Our findings shed new light on PGRN's biological role in NEC and demonstrate its potential as a therapeutic target for the disease.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Progranulin mitigates intestinal injury in a murine model of necrotizing enterocolitis by suppressing M1 macrophage polarization\",\"authors\":\"Dandan Mo, Youjun Qiu, Bing Tian, Xinli Liu, Yujie Chen, Guotao Zou, Chunbao Guo, Chun Deng\",\"doi\":\"10.1002/cbin.12209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Neonatal necrotizing enterocolitis (NEC) is a critical digestive disorder frequently affecting premature infants. Characterized by intestinal inflammation caused by activated M1 macrophages, modulation of macrophage polarization is considered a promising therapeutic strategy for NEC. It has been demonstrated that the growth factor-like protein progranulin (PGRN), which plays roles in a number of physiological and pathological processes, can influence macrophage polarization and exhibit anti-inflammatory characteristics in a number of illnesses. However, its role in NEC is yet to be investigated. Our research showed that the levels of PGRN were markedly elevated in both human and animal models of NEC. PGRN deletion in mice worsens NEC by encouraging M1 polarization of macrophages and escalating intestinal damage and inflammation. Intravenous administration of recombinant PGRN to NEC mice showed significant survival benefits and protective effects, likely due to PGRN's ability to inhibit M1 polarization and reduce the release of pro-inflammatory factors. Our findings shed new light on PGRN's biological role in NEC and demonstrate its potential as a therapeutic target for the disease.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cbin.12209\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cbin.12209","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
新生儿坏死性小肠结肠炎(NEC)是早产儿常患的一种严重消化系统疾病。其特征是由活化的 M1 巨噬细胞引起的肠道炎症,因此,调节巨噬细胞的极化被认为是治疗 NEC 的一种很有前景的策略。有研究表明,生长因子样蛋白原花青素(PGRN)在多种生理和病理过程中发挥作用,可影响巨噬细胞的极化,并在多种疾病中表现出抗炎特性。然而,它在 NEC 中的作用还有待研究。我们的研究表明,在人类和动物 NEC 模型中,PGRN 的水平都明显升高。在小鼠体内缺失 PGRN 会促使巨噬细胞 M1 极化,加剧肠道损伤和炎症,从而使 NEC 恶化。静脉注射重组 PGRN 对 NEC 小鼠有显著的生存益处和保护作用,这可能是由于 PGRN 能够抑制 M1 极化并减少促炎因子的释放。我们的研究结果揭示了 PGRN 在 NEC 中的生物学作用,并证明了其作为该疾病治疗靶点的潜力。
Progranulin mitigates intestinal injury in a murine model of necrotizing enterocolitis by suppressing M1 macrophage polarization
Neonatal necrotizing enterocolitis (NEC) is a critical digestive disorder frequently affecting premature infants. Characterized by intestinal inflammation caused by activated M1 macrophages, modulation of macrophage polarization is considered a promising therapeutic strategy for NEC. It has been demonstrated that the growth factor-like protein progranulin (PGRN), which plays roles in a number of physiological and pathological processes, can influence macrophage polarization and exhibit anti-inflammatory characteristics in a number of illnesses. However, its role in NEC is yet to be investigated. Our research showed that the levels of PGRN were markedly elevated in both human and animal models of NEC. PGRN deletion in mice worsens NEC by encouraging M1 polarization of macrophages and escalating intestinal damage and inflammation. Intravenous administration of recombinant PGRN to NEC mice showed significant survival benefits and protective effects, likely due to PGRN's ability to inhibit M1 polarization and reduce the release of pro-inflammatory factors. Our findings shed new light on PGRN's biological role in NEC and demonstrate its potential as a therapeutic target for the disease.