{"title":"在 SpyBank 的帮助下,筛选成功共价酪氨酸酶偶联的抑制剂。","authors":"Yu Yi, Xuewang Gong, Mengyuan Cui, Yuting Liang, Jianfeng Mei, Guoqing Ying, Yinfei Wu","doi":"10.1002/bmc.5957","DOIUrl":null,"url":null,"abstract":"<p>Microbial metabolites are an important source of tyrosinase (TYR) inhibitors because of their rich chemical diversity. However, because of the complex metabolic environment of microbial products, it is difficult to rapidly locate and identify natural TYR inhibitors. Affinity-based ligand screening is an important method for capturing active ingredients in complex samples, but ligand immobilization is an important factor affecting the screening process. In this paper, TYR was used as ligand, and the SpyTag/SpyCatcher coupling system was used to rapidly construct affinity chromatography vectors for screening TYR inhibitors and separating active components from complex samples. We successfully expressed SpyTag–TYR fusion protein and SpyCatcher protein, and incubated SpyCatcher protein with epoxy-activated agarose. The SpyTag–TYR protein was spontaneously coupled with SpyCatcher to obtain an affinity chromatography filler for immobilization of TYR, and the performance of the packaging material was characterized. Finally, compound 1 with enzyme inhibitory activity was successfully obtained from the fermentation product of marine microorganism C. Through HPLC, MS, <sup>1</sup>H NMR and <sup>13</sup>C NMR analyses, its structure was deduced as azelaic acid, and its activity was analyzed. The results showed that this is a feasible method for screening TYR inhibitors in complex systems.</p>","PeriodicalId":8861,"journal":{"name":"Biomedical Chromatography","volume":"38 9","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Screening of inhibitors on successful covalent tyrosinase coupling with help from SpyBank\",\"authors\":\"Yu Yi, Xuewang Gong, Mengyuan Cui, Yuting Liang, Jianfeng Mei, Guoqing Ying, Yinfei Wu\",\"doi\":\"10.1002/bmc.5957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Microbial metabolites are an important source of tyrosinase (TYR) inhibitors because of their rich chemical diversity. However, because of the complex metabolic environment of microbial products, it is difficult to rapidly locate and identify natural TYR inhibitors. Affinity-based ligand screening is an important method for capturing active ingredients in complex samples, but ligand immobilization is an important factor affecting the screening process. In this paper, TYR was used as ligand, and the SpyTag/SpyCatcher coupling system was used to rapidly construct affinity chromatography vectors for screening TYR inhibitors and separating active components from complex samples. We successfully expressed SpyTag–TYR fusion protein and SpyCatcher protein, and incubated SpyCatcher protein with epoxy-activated agarose. The SpyTag–TYR protein was spontaneously coupled with SpyCatcher to obtain an affinity chromatography filler for immobilization of TYR, and the performance of the packaging material was characterized. Finally, compound 1 with enzyme inhibitory activity was successfully obtained from the fermentation product of marine microorganism C. Through HPLC, MS, <sup>1</sup>H NMR and <sup>13</sup>C NMR analyses, its structure was deduced as azelaic acid, and its activity was analyzed. The results showed that this is a feasible method for screening TYR inhibitors in complex systems.</p>\",\"PeriodicalId\":8861,\"journal\":{\"name\":\"Biomedical Chromatography\",\"volume\":\"38 9\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Chromatography\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bmc.5957\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Chromatography","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bmc.5957","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Screening of inhibitors on successful covalent tyrosinase coupling with help from SpyBank
Microbial metabolites are an important source of tyrosinase (TYR) inhibitors because of their rich chemical diversity. However, because of the complex metabolic environment of microbial products, it is difficult to rapidly locate and identify natural TYR inhibitors. Affinity-based ligand screening is an important method for capturing active ingredients in complex samples, but ligand immobilization is an important factor affecting the screening process. In this paper, TYR was used as ligand, and the SpyTag/SpyCatcher coupling system was used to rapidly construct affinity chromatography vectors for screening TYR inhibitors and separating active components from complex samples. We successfully expressed SpyTag–TYR fusion protein and SpyCatcher protein, and incubated SpyCatcher protein with epoxy-activated agarose. The SpyTag–TYR protein was spontaneously coupled with SpyCatcher to obtain an affinity chromatography filler for immobilization of TYR, and the performance of the packaging material was characterized. Finally, compound 1 with enzyme inhibitory activity was successfully obtained from the fermentation product of marine microorganism C. Through HPLC, MS, 1H NMR and 13C NMR analyses, its structure was deduced as azelaic acid, and its activity was analyzed. The results showed that this is a feasible method for screening TYR inhibitors in complex systems.
期刊介绍:
Biomedical Chromatography is devoted to the publication of original papers on the applications of chromatography and allied techniques in the biological and medical sciences. Research papers and review articles cover the methods and techniques relevant to the separation, identification and determination of substances in biochemistry, biotechnology, molecular biology, cell biology, clinical chemistry, pharmacology and related disciplines. These include the analysis of body fluids, cells and tissues, purification of biologically important compounds, pharmaco-kinetics and sequencing methods using HPLC, GC, HPLC-MS, TLC, paper chromatography, affinity chromatography, gel filtration, electrophoresis and related techniques.