神经系统疾病中的泛素系统突变。

IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
{"title":"神经系统疾病中的泛素系统突变。","authors":"","doi":"10.1016/j.tibs.2024.06.011","DOIUrl":null,"url":null,"abstract":"<div><div>Neuronal ubiquitin balance impacts the fate of countless cellular proteins, and its disruption is associated with various neurological disorders. The ubiquitin system is critical for proper neuronal cell state transitions and the clearance of misfolded or aggregated proteins that threaten cellular integrity. This article reviews the state of and recent advancements in our understanding of the disruptions to components of the ubiquitin system, in particular E3 ligases and deubiquitylases, in neurodevelopmental and neurodegenerative diseases. Specific focus is on enzymes with recent progress in their characterization, including identifying enzyme-substrate pairs, the use of stem cell and animal models, and the development of therapeutics for ubiquitin-related diseases.</div></div>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"49 10","pages":"Pages 875-887"},"PeriodicalIF":11.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ubiquitin system mutations in neurological diseases\",\"authors\":\"\",\"doi\":\"10.1016/j.tibs.2024.06.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Neuronal ubiquitin balance impacts the fate of countless cellular proteins, and its disruption is associated with various neurological disorders. The ubiquitin system is critical for proper neuronal cell state transitions and the clearance of misfolded or aggregated proteins that threaten cellular integrity. This article reviews the state of and recent advancements in our understanding of the disruptions to components of the ubiquitin system, in particular E3 ligases and deubiquitylases, in neurodevelopmental and neurodegenerative diseases. Specific focus is on enzymes with recent progress in their characterization, including identifying enzyme-substrate pairs, the use of stem cell and animal models, and the development of therapeutics for ubiquitin-related diseases.</div></div>\",\"PeriodicalId\":440,\"journal\":{\"name\":\"Trends in Biochemical Sciences\",\"volume\":\"49 10\",\"pages\":\"Pages 875-887\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Biochemical Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0968000424001543\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Biochemical Sciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968000424001543","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

神经元泛素平衡影响着无数细胞蛋白质的命运,泛素平衡的破坏与各种神经系统疾病有关。泛素系统对神经元细胞的正常状态转换以及清除威胁细胞完整性的错误折叠或聚集蛋白至关重要。这篇文章回顾了我们对泛素系统(尤其是 E3 连接酶和去泛素化酶)成分在神经发育和神经退行性疾病中的破坏的认识现状和最新进展。具体重点是最近在酶表征方面取得进展的酶,包括确定酶-底物配对、干细胞和动物模型的使用,以及泛素相关疾病疗法的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ubiquitin system mutations in neurological diseases
Neuronal ubiquitin balance impacts the fate of countless cellular proteins, and its disruption is associated with various neurological disorders. The ubiquitin system is critical for proper neuronal cell state transitions and the clearance of misfolded or aggregated proteins that threaten cellular integrity. This article reviews the state of and recent advancements in our understanding of the disruptions to components of the ubiquitin system, in particular E3 ligases and deubiquitylases, in neurodevelopmental and neurodegenerative diseases. Specific focus is on enzymes with recent progress in their characterization, including identifying enzyme-substrate pairs, the use of stem cell and animal models, and the development of therapeutics for ubiquitin-related diseases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Trends in Biochemical Sciences
Trends in Biochemical Sciences 生物-生化与分子生物学
CiteScore
22.90
自引率
0.70%
发文量
148
审稿时长
6-12 weeks
期刊介绍: For over 40 years, Trends in Biochemical Sciences (TIBS) has been a leading publication keeping readers informed about recent advances in all areas of biochemistry and molecular biology. Through monthly, peer-reviewed issues, TIBS covers a wide range of topics, from traditional subjects like protein structure and function to emerging areas in signaling and metabolism. Articles are curated by the Editor and authored by top researchers in their fields, with a focus on moving beyond simple literature summaries to providing novel insights and perspectives. Each issue primarily features concise and timely Reviews and Opinions, supplemented by shorter articles including Spotlights, Forums, and Technology of the Month, as well as impactful pieces like Science & Society and Scientific Life articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信