{"title":"mlpt smORF 基因对吻蝽若虫期的消化生理和蜕皮至关重要。","authors":"","doi":"10.1016/j.ibmb.2024.104154","DOIUrl":null,"url":null,"abstract":"<div><p>Chagas disease affects around 8 million people globally, with Latin America bearing approximately 10,000 deaths each year. Combatting the disease relies heavily on vector control methods, necessitating the identification of new targets. Within insect genomes, genes harboring small open reading frames (smORFs - < 100 amino acids) present numerous potential candidates. In our investigation, we elucidate the pivotal role of the archetypal smORF-containing gene, <em>mille-pattes/polished-rice/tarsalless</em> (<em>mlpt/pri/tal</em>), in the post-embryonic development of the kissing bug <em>Rhodnius prolixus</em>. Injection of double-stranded RNA targeting <em>mlpt</em> (ds<em>mlpt</em>) during nymphal stages yields a spectrum of phenotypes hindering post-embryonic growth. Notably, fourth or fifth stage nymphs subjected to ds<em>mlpt</em> do not undergo molting. These ds<em>mlpt</em> nymphs display heightened mRNA levels of JHAMT-like and EPOX-like, enzymes putatively involved in the juvenile hormone (JH) pathway, alongside increased expression of the transcription factor Kr-h1, indicating changes in the hormonal control. Histological examination reveals structural alterations in the hindgut and external cuticle of ds<em>mlpt</em> nymphs compared to control (ds<em>GFP</em>) counterparts. Furthermore, significant changes in the vector's digestive physiology were observed, with elevated hemozoin and glucose levels in the posterior midgut of ds<em>mlpt</em> nymphs. Importantly, ds<em>mlpt</em> nymphs exhibit impaired metacyclogenesis of <em>Trypanosoma cruzi</em>, the causative agent of Chagas disease, underscoring the crucial role of proper gut organization in parasite differentiation. Thus, our findings constitute the first evidence of a smORF-containing gene's regulatory influence on vector physiology, parasitic cycle, and disease transmission.</p></div>","PeriodicalId":330,"journal":{"name":"Insect Biochemistry and Molecular Biology","volume":"172 ","pages":"Article 104154"},"PeriodicalIF":3.2000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The mlpt smORF gene is essential for digestive physiology and molting during nymphal stages in the kissing bug Rhodnius prolixus\",\"authors\":\"\",\"doi\":\"10.1016/j.ibmb.2024.104154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Chagas disease affects around 8 million people globally, with Latin America bearing approximately 10,000 deaths each year. Combatting the disease relies heavily on vector control methods, necessitating the identification of new targets. Within insect genomes, genes harboring small open reading frames (smORFs - < 100 amino acids) present numerous potential candidates. In our investigation, we elucidate the pivotal role of the archetypal smORF-containing gene, <em>mille-pattes/polished-rice/tarsalless</em> (<em>mlpt/pri/tal</em>), in the post-embryonic development of the kissing bug <em>Rhodnius prolixus</em>. Injection of double-stranded RNA targeting <em>mlpt</em> (ds<em>mlpt</em>) during nymphal stages yields a spectrum of phenotypes hindering post-embryonic growth. Notably, fourth or fifth stage nymphs subjected to ds<em>mlpt</em> do not undergo molting. These ds<em>mlpt</em> nymphs display heightened mRNA levels of JHAMT-like and EPOX-like, enzymes putatively involved in the juvenile hormone (JH) pathway, alongside increased expression of the transcription factor Kr-h1, indicating changes in the hormonal control. Histological examination reveals structural alterations in the hindgut and external cuticle of ds<em>mlpt</em> nymphs compared to control (ds<em>GFP</em>) counterparts. Furthermore, significant changes in the vector's digestive physiology were observed, with elevated hemozoin and glucose levels in the posterior midgut of ds<em>mlpt</em> nymphs. Importantly, ds<em>mlpt</em> nymphs exhibit impaired metacyclogenesis of <em>Trypanosoma cruzi</em>, the causative agent of Chagas disease, underscoring the crucial role of proper gut organization in parasite differentiation. Thus, our findings constitute the first evidence of a smORF-containing gene's regulatory influence on vector physiology, parasitic cycle, and disease transmission.</p></div>\",\"PeriodicalId\":330,\"journal\":{\"name\":\"Insect Biochemistry and Molecular Biology\",\"volume\":\"172 \",\"pages\":\"Article 104154\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insect Biochemistry and Molecular Biology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0965174824000857\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Biochemistry and Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0965174824000857","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The mlpt smORF gene is essential for digestive physiology and molting during nymphal stages in the kissing bug Rhodnius prolixus
Chagas disease affects around 8 million people globally, with Latin America bearing approximately 10,000 deaths each year. Combatting the disease relies heavily on vector control methods, necessitating the identification of new targets. Within insect genomes, genes harboring small open reading frames (smORFs - < 100 amino acids) present numerous potential candidates. In our investigation, we elucidate the pivotal role of the archetypal smORF-containing gene, mille-pattes/polished-rice/tarsalless (mlpt/pri/tal), in the post-embryonic development of the kissing bug Rhodnius prolixus. Injection of double-stranded RNA targeting mlpt (dsmlpt) during nymphal stages yields a spectrum of phenotypes hindering post-embryonic growth. Notably, fourth or fifth stage nymphs subjected to dsmlpt do not undergo molting. These dsmlpt nymphs display heightened mRNA levels of JHAMT-like and EPOX-like, enzymes putatively involved in the juvenile hormone (JH) pathway, alongside increased expression of the transcription factor Kr-h1, indicating changes in the hormonal control. Histological examination reveals structural alterations in the hindgut and external cuticle of dsmlpt nymphs compared to control (dsGFP) counterparts. Furthermore, significant changes in the vector's digestive physiology were observed, with elevated hemozoin and glucose levels in the posterior midgut of dsmlpt nymphs. Importantly, dsmlpt nymphs exhibit impaired metacyclogenesis of Trypanosoma cruzi, the causative agent of Chagas disease, underscoring the crucial role of proper gut organization in parasite differentiation. Thus, our findings constitute the first evidence of a smORF-containing gene's regulatory influence on vector physiology, parasitic cycle, and disease transmission.
期刊介绍:
This international journal publishes original contributions and mini-reviews in the fields of insect biochemistry and insect molecular biology. Main areas of interest are neurochemistry, hormone and pheromone biochemistry, enzymes and metabolism, hormone action and gene regulation, gene characterization and structure, pharmacology, immunology and cell and tissue culture. Papers on the biochemistry and molecular biology of other groups of arthropods are published if of general interest to the readership. Technique papers will be considered for publication if they significantly advance the field of insect biochemistry and molecular biology in the opinion of the Editors and Editorial Board.