洞察 Cu/Pr 双原子共修饰 TiO2 卓越的光催化氢进化机理。

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS
Hongshun Zheng, Baoye Zi, Tong Zhou, Guoyang Qiu, Zhongge Luo, Qingjie Lu, Alain Rafael Puente Santiago, Yumin Zhang, Jianhong Zhao, Jin Zhang, Tianwei He and Qingju Liu
{"title":"洞察 Cu/Pr 双原子共修饰 TiO2 卓越的光催化氢进化机理。","authors":"Hongshun Zheng, Baoye Zi, Tong Zhou, Guoyang Qiu, Zhongge Luo, Qingjie Lu, Alain Rafael Puente Santiago, Yumin Zhang, Jianhong Zhao, Jin Zhang, Tianwei He and Qingju Liu","doi":"10.1039/D4NH00196F","DOIUrl":null,"url":null,"abstract":"<p >The development of high-activity photocatalysts is crucial for the current large-scale development of photocatalytic hydrogen applications. Herein, we have developed a strategy to significantly enhance the hydrogen photocatalytic activity of Cu/Pr di-atom co-modified TiO<small><sub>2</sub></small> architectures by selectively anchoring Cu single atoms on the oxygen vacancies of the TiO<small><sub>2</sub></small> surface and replacing a trace of Ti atoms in the bulk with rare earth Pr atoms. Calculation results demonstrated that the synergistic effect between Cu single atoms and Pr atoms regulates the electronic structure of Cu/Pr–TiO<small><sub>2</sub></small>, thus promoting the separation of photogenerated carriers and their directional migration to Cu single atoms for the photocatalytic reaction. Furthermore, the d-band center of Cu/Pr–TiO<small><sub>2</sub></small>, which is located at −4.70 eV, optimizes the adsorption and desorption behavior of H*. Compared to TiO<small><sub>2</sub></small>, Pr–TiO<small><sub>2</sub></small>, and Cu/TiO<small><sub>2</sub></small>, Cu/Pr–TiO<small><sub>2</sub></small> displays the best H* adsorption Gibbs free energy (−0.047 eV). Furthermore, experimental results confirmed that the photogenerated carrier lifetime of Cu/Pr–TiO<small><sub>2</sub></small> is not only the longest (2.45 ns), but its hydrogen production rate (34.90 mmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small>) also significantly surpasses those of Cu/TiO<small><sub>2</sub></small> (13.39 mmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small>) and Pr–TiO<small><sub>2</sub></small> (0.89 mmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small>). These findings open up a novel atomic perspective for the development of optimal hydrogen activity in dual-atom-modified TiO<small><sub>2</sub></small> photocatalysts.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insight into mechanism for remarkable photocatalytic hydrogen evolution of Cu/Pr dual atom co-modified TiO2†\",\"authors\":\"Hongshun Zheng, Baoye Zi, Tong Zhou, Guoyang Qiu, Zhongge Luo, Qingjie Lu, Alain Rafael Puente Santiago, Yumin Zhang, Jianhong Zhao, Jin Zhang, Tianwei He and Qingju Liu\",\"doi\":\"10.1039/D4NH00196F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The development of high-activity photocatalysts is crucial for the current large-scale development of photocatalytic hydrogen applications. Herein, we have developed a strategy to significantly enhance the hydrogen photocatalytic activity of Cu/Pr di-atom co-modified TiO<small><sub>2</sub></small> architectures by selectively anchoring Cu single atoms on the oxygen vacancies of the TiO<small><sub>2</sub></small> surface and replacing a trace of Ti atoms in the bulk with rare earth Pr atoms. Calculation results demonstrated that the synergistic effect between Cu single atoms and Pr atoms regulates the electronic structure of Cu/Pr–TiO<small><sub>2</sub></small>, thus promoting the separation of photogenerated carriers and their directional migration to Cu single atoms for the photocatalytic reaction. Furthermore, the d-band center of Cu/Pr–TiO<small><sub>2</sub></small>, which is located at −4.70 eV, optimizes the adsorption and desorption behavior of H*. Compared to TiO<small><sub>2</sub></small>, Pr–TiO<small><sub>2</sub></small>, and Cu/TiO<small><sub>2</sub></small>, Cu/Pr–TiO<small><sub>2</sub></small> displays the best H* adsorption Gibbs free energy (−0.047 eV). Furthermore, experimental results confirmed that the photogenerated carrier lifetime of Cu/Pr–TiO<small><sub>2</sub></small> is not only the longest (2.45 ns), but its hydrogen production rate (34.90 mmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small>) also significantly surpasses those of Cu/TiO<small><sub>2</sub></small> (13.39 mmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small>) and Pr–TiO<small><sub>2</sub></small> (0.89 mmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small>). These findings open up a novel atomic perspective for the development of optimal hydrogen activity in dual-atom-modified TiO<small><sub>2</sub></small> photocatalysts.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/nh/d4nh00196f\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/nh/d4nh00196f","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

开发高活性光催化剂对于当前大规模开发光催化氢气应用至关重要。在此,我们开发了一种策略,通过选择性地将 Cu 单原子锚定在 TiO2 表面的氧空位上,并用稀土 Pr 原子取代块体中的微量 Ti 原子,从而显著提高了 Cu/Pr 二原子共修饰 TiO2 结构的氢光催化活性。计算结果表明,Cu 单原子和 Pr 原子之间的协同效应调节了 Cu/Pr-TiO2 的电子结构,从而促进了光生载流子的分离及其向 Cu 单原子的定向迁移,以进行光催化反应。此外,Cu/Pr-TiO2 的 d 带中心位于 -4.70 eV,优化了 H* 的吸附和解吸行为。与 TiO2、Pr-TiO2 和 Cu/TiO2 相比,Cu/Pr-TiO2 显示出最佳的 H* 吸附吉布斯自由能(-0.047 eV)。此外,实验结果证实,Cu/Pr-TiO2 的光生载流子寿命不仅最长(2.45 ns),而且其产氢速率(34.90 mmol g-1 h-1)也大大超过了 Cu/TiO2 (13.39 mmol g-1 h-1)和 Pr-TiO2(0.89 mmol g-1 h-1)。这些发现为在双原子修饰的二氧化钛光催化剂中开发最佳氢气活性开辟了新的原子视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Insight into mechanism for remarkable photocatalytic hydrogen evolution of Cu/Pr dual atom co-modified TiO2†

Insight into mechanism for remarkable photocatalytic hydrogen evolution of Cu/Pr dual atom co-modified TiO2†

Insight into mechanism for remarkable photocatalytic hydrogen evolution of Cu/Pr dual atom co-modified TiO2†

The development of high-activity photocatalysts is crucial for the current large-scale development of photocatalytic hydrogen applications. Herein, we have developed a strategy to significantly enhance the hydrogen photocatalytic activity of Cu/Pr di-atom co-modified TiO2 architectures by selectively anchoring Cu single atoms on the oxygen vacancies of the TiO2 surface and replacing a trace of Ti atoms in the bulk with rare earth Pr atoms. Calculation results demonstrated that the synergistic effect between Cu single atoms and Pr atoms regulates the electronic structure of Cu/Pr–TiO2, thus promoting the separation of photogenerated carriers and their directional migration to Cu single atoms for the photocatalytic reaction. Furthermore, the d-band center of Cu/Pr–TiO2, which is located at −4.70 eV, optimizes the adsorption and desorption behavior of H*. Compared to TiO2, Pr–TiO2, and Cu/TiO2, Cu/Pr–TiO2 displays the best H* adsorption Gibbs free energy (−0.047 eV). Furthermore, experimental results confirmed that the photogenerated carrier lifetime of Cu/Pr–TiO2 is not only the longest (2.45 ns), but its hydrogen production rate (34.90 mmol g−1 h−1) also significantly surpasses those of Cu/TiO2 (13.39 mmol g−1 h−1) and Pr–TiO2 (0.89 mmol g−1 h−1). These findings open up a novel atomic perspective for the development of optimal hydrogen activity in dual-atom-modified TiO2 photocatalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信