用于核磁共振成像引导热疗的近红外仿生混合磁性纳米载体

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
ACS Applied Materials & Interfaces Pub Date : 2025-03-05 Epub Date: 2024-07-08 DOI:10.1021/acsami.4c03434
João Victor Ribeiro Rocha, Rafael Freire Krause, Carlos Eduardo Ribeiro, Nathália Corrêa de Almeida Oliveira, Lucas Ribeiro de Sousa, Juracy Leandro Santos, Samuel de Melo Castro, Marize Campos Valadares, Mauro Cunha Xavier Pinto, Marcilia Viana Pavam, Eliana Martins Lima, Sebastião Antônio Mendanha, Andris Figueiroa Bakuzis
{"title":"用于核磁共振成像引导热疗的近红外仿生混合磁性纳米载体","authors":"João Victor Ribeiro Rocha, Rafael Freire Krause, Carlos Eduardo Ribeiro, Nathália Corrêa de Almeida Oliveira, Lucas Ribeiro de Sousa, Juracy Leandro Santos, Samuel de Melo Castro, Marize Campos Valadares, Mauro Cunha Xavier Pinto, Marcilia Viana Pavam, Eliana Martins Lima, Sebastião Antônio Mendanha, Andris Figueiroa Bakuzis","doi":"10.1021/acsami.4c03434","DOIUrl":null,"url":null,"abstract":"<p><p>Cell-membrane hybrid nanoparticles (NPs) are designed to improve drug delivery, thermal therapy, and immunotherapy for several diseases. Here, we report the development of distinct biomimetic magnetic nanocarriers containing magnetic nanoparticles encapsulated in vesicles and IR780 near-infrared dyes incorporated in the membranes. Distinct cell membranes are investigated, red blood cell (RBC), melanoma (B16F10), and glioblastoma (GL261). Hybrid nanocarriers containing synthetic lipids and a cell membrane are designed. The biomedical applications of several systems are compared. The inorganic nanoparticle consisted of Mn-ferrite nanoparticles with a core diameter of 15 ± 4 nm. TEM images show many multicore nanostructures (∼40 nm), which correlate with the hydrodynamic size. Ultrahigh transverse relaxivity values are reported for the magnetic NPs, 746 mM<sup>-1</sup>s<sup>-1</sup>, decreasing respectively to 445 mM<sup>-1</sup>s<sup>-1</sup> and 278 mM<sup>-1</sup>s<sup>-1</sup> for the B16F10 and GL261 hybrid vesicles. The ratio of relaxivities <i>r</i><sub>2</sub>/<i>r</i><sub>1</sub> decreased with the higher encapsulation of NPs and increased for the biomimetic liposomes. Therapeutic temperatures are achieved by both, magnetic nanoparticle hyperthermia and photothermal therapy. Photothermal conversion efficiency ∼25-30% are reported. Cell culture revealed lower wrapping times for the biomimetic vesicles. <i>In vivo</i> experiments with distinct routes of nanoparticle administration were investigated. Intratumoral injection proved the nanoparticle-mediated PTT efficiency. MRI and near-infrared images showed that the nanoparticles accumulate in the tumor after intravenous or intraperitoneal administration. Both routes benefit from MRI-guided PTT and demonstrate the multimodal theranostic applications for cancer therapy.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"13094-13110"},"PeriodicalIF":8.3000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Near Infrared Biomimetic Hybrid Magnetic Nanocarrier for MRI-Guided Thermal Therapy.\",\"authors\":\"João Victor Ribeiro Rocha, Rafael Freire Krause, Carlos Eduardo Ribeiro, Nathália Corrêa de Almeida Oliveira, Lucas Ribeiro de Sousa, Juracy Leandro Santos, Samuel de Melo Castro, Marize Campos Valadares, Mauro Cunha Xavier Pinto, Marcilia Viana Pavam, Eliana Martins Lima, Sebastião Antônio Mendanha, Andris Figueiroa Bakuzis\",\"doi\":\"10.1021/acsami.4c03434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cell-membrane hybrid nanoparticles (NPs) are designed to improve drug delivery, thermal therapy, and immunotherapy for several diseases. Here, we report the development of distinct biomimetic magnetic nanocarriers containing magnetic nanoparticles encapsulated in vesicles and IR780 near-infrared dyes incorporated in the membranes. Distinct cell membranes are investigated, red blood cell (RBC), melanoma (B16F10), and glioblastoma (GL261). Hybrid nanocarriers containing synthetic lipids and a cell membrane are designed. The biomedical applications of several systems are compared. The inorganic nanoparticle consisted of Mn-ferrite nanoparticles with a core diameter of 15 ± 4 nm. TEM images show many multicore nanostructures (∼40 nm), which correlate with the hydrodynamic size. Ultrahigh transverse relaxivity values are reported for the magnetic NPs, 746 mM<sup>-1</sup>s<sup>-1</sup>, decreasing respectively to 445 mM<sup>-1</sup>s<sup>-1</sup> and 278 mM<sup>-1</sup>s<sup>-1</sup> for the B16F10 and GL261 hybrid vesicles. The ratio of relaxivities <i>r</i><sub>2</sub>/<i>r</i><sub>1</sub> decreased with the higher encapsulation of NPs and increased for the biomimetic liposomes. Therapeutic temperatures are achieved by both, magnetic nanoparticle hyperthermia and photothermal therapy. Photothermal conversion efficiency ∼25-30% are reported. Cell culture revealed lower wrapping times for the biomimetic vesicles. <i>In vivo</i> experiments with distinct routes of nanoparticle administration were investigated. Intratumoral injection proved the nanoparticle-mediated PTT efficiency. MRI and near-infrared images showed that the nanoparticles accumulate in the tumor after intravenous or intraperitoneal administration. Both routes benefit from MRI-guided PTT and demonstrate the multimodal theranostic applications for cancer therapy.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\" \",\"pages\":\"13094-13110\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c03434\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c03434","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

细胞-膜混合纳米粒子(NPs)旨在改善多种疾病的药物输送、热疗法和免疫疗法。在这里,我们报告了不同生物仿生磁性纳米载体的开发情况,这些载体包含封装在囊泡中的磁性纳米粒子和结合在膜中的 IR780 近红外染料。研究了不同的细胞膜:红细胞(RBC)、黑色素瘤(B16F10)和胶质母细胞瘤(GL261)。设计了含有合成脂质和细胞膜的混合纳米载体。比较了几种系统的生物医学应用。无机纳米粒子由锰铁氧体纳米粒子组成,核心直径为 15 ± 4 nm。TEM 图像显示出许多多核纳米结构(∼40 nm),这与流体力学尺寸相关。磁性 NPs 的超高横向弛豫值为 746 mM-1s-1,而 B16F10 和 GL261 混合囊泡则分别降至 445 mM-1s-1 和 278 mM-1s-1。弛豫度 r2/r1 的比值随着 NPs 封装度的提高而降低,而生物仿生脂质体的弛豫度比值则提高了。磁性纳米粒子热疗和光热疗法都能达到治疗温度。据报道,光热转换效率可达 25-30%。细胞培养显示,仿生囊泡的包裹时间较短。研究人员对纳米粒子的不同给药途径进行了体内实验。瘤内注射证明了纳米颗粒介导的 PTT 效率。核磁共振成像和近红外图像显示,在静脉或腹腔给药后,纳米粒子在肿瘤内聚集。这两种途径都能从核磁共振成像引导的PTT中获益,证明了多模式疗法在癌症治疗中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Near Infrared Biomimetic Hybrid Magnetic Nanocarrier for MRI-Guided Thermal Therapy.

Near Infrared Biomimetic Hybrid Magnetic Nanocarrier for MRI-Guided Thermal Therapy.

Cell-membrane hybrid nanoparticles (NPs) are designed to improve drug delivery, thermal therapy, and immunotherapy for several diseases. Here, we report the development of distinct biomimetic magnetic nanocarriers containing magnetic nanoparticles encapsulated in vesicles and IR780 near-infrared dyes incorporated in the membranes. Distinct cell membranes are investigated, red blood cell (RBC), melanoma (B16F10), and glioblastoma (GL261). Hybrid nanocarriers containing synthetic lipids and a cell membrane are designed. The biomedical applications of several systems are compared. The inorganic nanoparticle consisted of Mn-ferrite nanoparticles with a core diameter of 15 ± 4 nm. TEM images show many multicore nanostructures (∼40 nm), which correlate with the hydrodynamic size. Ultrahigh transverse relaxivity values are reported for the magnetic NPs, 746 mM-1s-1, decreasing respectively to 445 mM-1s-1 and 278 mM-1s-1 for the B16F10 and GL261 hybrid vesicles. The ratio of relaxivities r2/r1 decreased with the higher encapsulation of NPs and increased for the biomimetic liposomes. Therapeutic temperatures are achieved by both, magnetic nanoparticle hyperthermia and photothermal therapy. Photothermal conversion efficiency ∼25-30% are reported. Cell culture revealed lower wrapping times for the biomimetic vesicles. In vivo experiments with distinct routes of nanoparticle administration were investigated. Intratumoral injection proved the nanoparticle-mediated PTT efficiency. MRI and near-infrared images showed that the nanoparticles accumulate in the tumor after intravenous or intraperitoneal administration. Both routes benefit from MRI-guided PTT and demonstrate the multimodal theranostic applications for cancer therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信